EAGER: A Graphical Approach for Choice Modeling
EAGER:选择建模的图形方法
基本信息
- 批准号:1450848
- 负责人:
- 金额:$ 8.79万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-01-01 至 2015-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
A central problem of interest to operations managers is how to use historical sales data to accurately predict revenues when offering a particular assortment of products. Such predictions are subsequently used in making important business decisions such as assortment planning, new product development, and demand estimation. Choice models are widely used in modeling the underlying customer behavior. Traditional choice models are either too simple to accurately reflect the nature of how people make decisions, or so complex that it is either computationally intractable to fit the model to historical data or to subsequently use it to make business decisions. This EArly-concept Grant for Exploratory Research (EAGER) project studies innovative and novel choice models that are designed to be computationally efficient for the decision problems of interest in revenue management and at the same time have strong predictive power. The results of the research will enable improved business decisions to be made while simultaneously reducing operational costs. It will provide key technologies in important business applications of assortment planning, new product development, brand value evaluation, demand estimation, optimal pricing, and revenue management. It will generate collaborations among the disciplines of operations management, economics, cognitive psychology, and machine learning. The research component is tightly integrated with the education plan, including a graduate course on probabilistic graphical models. Both undergraduate and graduate students will benefit from the research activities by engaging in research and applying the knowledge to solve real world problems.The suboptimal tradeoff of traditional choice models is due to the fact that these models are designed without computational efficiency in mind. In this era of tremendous increase in the scale of data being generated, computational efficiency is of primary concern. This project will build on graph-based probabilistic models such as random walks on graphs and probabilistic graphical models, and will lead to (a) development of new graph-based models for choice modeling designed for computational efficiency; (b) development of new methodologies for learning these models from historical purchase data; (c) development of novel inference algorithms for predicting the customer preferences from these models; and (d) development of new methodologies for solving optimization problems in revenue management with these models. The research will lay foundations of a new graph-based modeling approach for revenue management. The significance and novelty of the work lie in the fact that the design objective of the choice modeling is critically different from the traditional criteria used by economists and cognitive psychologists (such as describing the functional form of the underlying rational decision processes), which does not consider the computational efficiency of solving decision problems in revenue management. In contrast to this, choice models for making decisions based on massive modern datasets should have computational efficiency embedded into the models by design. The theory and models developed in this project will bring together ideas and techniques from probability theory and graph theory to jointly reason about uncertainty and complexity (such as probabilistic graphical models and random walks on graphs) as well as insights and tools from recent advances in revenue management (such as choice modeling using Markov chains). The research has a potential to advance our fundamental understanding in how people make decisions when presented with many options.
运营经理感兴趣的一个中心问题是,在提供特定种类的产品时,如何使用历史销售数据来准确预测收入。这样的预测随后被用于做出重要的商业决策,如分类计划、新产品开发和需求估计。选择模型被广泛用于对潜在的客户行为进行建模。传统的选择模型要么过于简单,无法准确反映人们如何做出决策的本质,要么过于复杂,以至于要么在计算上很难将模型与历史数据相适应,要么随后使用它来做出商业决策。这个早期概念探索性研究奖助金(EARGER)项目研究了创新和新颖的选择模型,这些模型被设计为在计算上高效地解决收入管理中感兴趣的决策问题,同时具有强大的预测能力。研究结果将有助于在降低运营成本的同时做出更好的商业决策。它将在重要的商业应用中提供关键技术,如品种规划、新产品开发、品牌价值评估、需求估计、最优定价和收入管理。它将在运营管理、经济学、认知心理学和机器学习等学科之间产生协作。研究部分与教育计划紧密结合,包括一门关于概率图形模型的研究生课程。本科生和研究生都将通过从事研究和应用知识来解决现实世界的问题,从而从研究活动中受益。传统选择模型的次优权衡是因为这些模型在设计时没有考虑计算效率。在这个数据规模急剧增长的时代,计算效率是首要关注的问题。该项目将建立在基于图表的概率模型的基础上,如图表上的随机行走和概率图表模型,并将导致(A)开发新的基于图表的模型,用于为计算效率而设计的选择建模;(B)开发从历史购买数据中学习这些模型的新方法;(C)开发用于根据这些模型预测客户偏好的新推理算法;以及(D)开发利用这些模型解决收入管理中的优化问题的新方法。这项研究将为一种新的基于图的收入管理建模方法奠定基础。这项工作的意义和新颖性在于,选择模型的设计目标与经济学家和认知心理学家使用的传统标准(如描述潜在理性决策过程的函数形式)有很大不同,后者没有考虑收益管理中解决决策问题的计算效率。与此相反,基于海量现代数据集进行决策的选择模型应该在设计时将计算效率嵌入到模型中。该项目开发的理论和模型将汇集概率论和图论的思想和技术,以共同推理不确定性和复杂性(如概率图形模型和图上的随机游动),以及来自收入管理最新进展的见解和工具(如使用马尔科夫链进行选择建模)。这项研究有可能促进我们对人们在面临许多选择时如何做出决定的基本理解。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sewoong Oh其他文献
Proceedings of the 2017 ACM SIGMETRICS / International Conference on Measurement and Modeling of Computer Systems
2017 年 ACM SIGMETRICS/计算机系统测量和建模国际会议论文集
- DOI:
10.1145/3078505 - 发表时间:
2007 - 期刊:
- 影响因子:0
- 作者:
B. Hajek;Sewoong Oh;A. Chaintreau;L. Golubchik;Zhi - 通讯作者:
Zhi
Spectrum Estimation from a Few Entries
从几个条目进行频谱估计
- DOI:
10.1016/j.aml.2021.107342 - 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
A. Khetan;Sewoong Oh - 通讯作者:
Sewoong Oh
Matrix Norm Estimation from a Few Entries
根据几个条目进行矩阵范数估计
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
A. Khetan;Sewoong Oh - 通讯作者:
Sewoong Oh
A transformer model for de novo sequencing of data-independent acquisition mass spectrometry data
用于数据非依赖采集质谱数据从头测序的变压器模型
- DOI:
10.1038/s41592-025-02718-y - 发表时间:
2025-07-01 - 期刊:
- 影响因子:32.100
- 作者:
Justin Sanders;Bo Wen;Paul A. Rudnick;Richard S. Johnson;Christine C. Wu;Michael Riffle;Sewoong Oh;Michael J. MacCoss;William Stafford Noble - 通讯作者:
William Stafford Noble
Comparison of maxillary basal arch forms using the root apex in adult women with different skeletal patterns: A pilot study.
使用具有不同骨骼模式的成年女性的根尖比较上颌基弓形状:一项试点研究。
- DOI:
10.1016/j.ajodo.2019.09.021 - 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
W. Son;Sewoong Oh;Yong;Seong;Soo;Sung - 通讯作者:
Sung
Sewoong Oh的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sewoong Oh', 18)}}的其他基金
Collaborative Research: MLWiNS: Physical Layer Communication revisited via Deep Learning
合作研究:MLWiNS:通过深度学习重新审视物理层通信
- 批准号:
2002664 - 财政年份:2020
- 资助金额:
$ 8.79万 - 项目类别:
Standard Grant
CIF: RI: Small: Information-theoretic measures of dependencies and novel sample-based estimators
CIF:RI:小:依赖性的信息论测量和新颖的基于样本的估计器
- 批准号:
1929955 - 财政年份:2019
- 资助金额:
$ 8.79万 - 项目类别:
Continuing Grant
CAREER: Social Computation: Fundamental Limits and Efficient Algorithms
职业:社会计算:基本限制和高效算法
- 批准号:
1927712 - 财政年份:2019
- 资助金额:
$ 8.79万 - 项目类别:
Continuing Grant
CIF: RI: Small: Information-theoretic measures of dependencies and novel sample-based estimators
CIF:RI:小:依赖性的信息论测量和新颖的基于样本的估计器
- 批准号:
1815535 - 财政年份:2018
- 资助金额:
$ 8.79万 - 项目类别:
Continuing Grant
CAREER: Social Computation: Fundamental Limits and Efficient Algorithms
职业:社会计算:基本限制和高效算法
- 批准号:
1553452 - 财政年份:2016
- 资助金额:
$ 8.79万 - 项目类别:
Continuing Grant
TWC: Small: Fundamental Limits in Differential Privacy
TWC:小:差异隐私的基本限制
- 批准号:
1527754 - 财政年份:2015
- 资助金额:
$ 8.79万 - 项目类别:
Standard Grant
相似海外基金
A New Approach to Vascular Reconstruction using Graphical 3D Printing and Flow Modelling to create personalised precision engineered surgery
使用图形 3D 打印和流动建模进行血管重建的新方法,以创建个性化的精密工程手术
- 批准号:
463878 - 财政年份:2022
- 资助金额:
$ 8.79万 - 项目类别:
Operating Grants
An Interpretable Graphical Approach to Automatic Ejection Fraction Estimation
自动射血分数估计的可解释图形方法
- 批准号:
467197 - 财政年份:2021
- 资助金额:
$ 8.79万 - 项目类别:
Studentship Programs
Online Dynamic Graphical Game Approach for Pursuing Illegal Fishing Vessels with Running Energy Optimization**
通过运行能量优化追捕非法渔船的在线动态图形游戏方法**
- 批准号:
537568-2018 - 财政年份:2018
- 资助金额:
$ 8.79万 - 项目类别:
Engage Grants Program
RI: Small: A New Approach to Integrating Graphical Models in Decision-Theoretic Planning
RI:小型:在决策理论规划中集成图形模型的新方法
- 批准号:
1718384 - 财政年份:2017
- 资助金额:
$ 8.79万 - 项目类别:
Standard Grant
CAREER: A Tangible-Graphical Approach to Engage Young Children in Wearable Design
职业:一种让幼儿参与可穿戴设计的有形图形方法
- 批准号:
1834629 - 财政年份:2017
- 资助金额:
$ 8.79万 - 项目类别:
Continuing Grant
CAREER: A Tangible-Graphical Approach to Engage Young Children in Wearable Design
职业:一种让幼儿参与可穿戴设计的有形图形方法
- 批准号:
1652339 - 财政年份:2017
- 资助金额:
$ 8.79万 - 项目类别:
Continuing Grant
A graphical model approach to pedigree construction using constrained optimisation
使用约束优化进行谱系构建的图形模型方法
- 批准号:
G1002312/1 - 财政年份:2011
- 资助金额:
$ 8.79万 - 项目类别:
Research Grant
Dissertation Research: Interspecific interactions over a latitudinal resource gradient: a graphical modeling approach using fig wasps
论文研究:纬度资源梯度上的种间相互作用:使用无花果黄蜂的图形建模方法
- 批准号:
1011277 - 财政年份:2010
- 资助金额:
$ 8.79万 - 项目类别:
Standard Grant
Implementing a simple graphical approach to understanding bayesian network interference
实施简单的图形方法来理解贝叶斯网络干扰
- 批准号:
353519-2007 - 财政年份:2007
- 资助金额:
$ 8.79万 - 项目类别:
University Undergraduate Student Research Awards
An Analysis of the Cognitive Functions of Graphical Representations in Extended Semantic Approach
扩展语义方法中图形表示的认知功能分析
- 批准号:
18500206 - 财政年份:2006
- 资助金额:
$ 8.79万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




