Collaborative Research: BRAIN EAGER: Stretchable graphene transistors for high signal, high channel count neural recording
合作研究:BRAIN EAGER:用于高信号、高通道数神经记录的可拉伸石墨烯晶体管
基本信息
- 批准号:1450967
- 负责人:
- 金额:$ 10万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-09-01 至 2016-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This award is jointly made by two programs the Instrument Development for Biological Research program (IDBR) and Emerging Frontiers (EF) in the Directorate of Biological Sciences (BIO).A key roadblock to expanding our knowledge of the brain is that existing tools to probe its function are simply not up to the enormity of the task. Techniques for recording neural signals allow at most signals from tens or hundreds of neurons to be recorded, when thousands or even millions are needed. To address this challenge, improved types of sensors are required that record neural activity with greater signal quality and are more suited to parallel recording than current approaches. This collaborative project will develop a new type of sensor based on flexible graphene transistors. Graphene is an atomically thin sheet of carbon atoms that exhibits desirable physical, chemical, and electrical properties for interfacing with biological systems. However, the use of graphene transistors for single neuron sensing is largely unexplored. Open questions include the nature of the contact between the neuron and the graphene, the ultimate strength of electrical signals, and the long-term biocompatibility of graphene-based electrodes in the brain. Our proposed work will address these fundamental questions. If successful, this project will ultimately lead to societal benefits such as better neural prosthetics and new treatments for neurological disorders. Training opportunities at the interface of nano- and neuroscience, a key area of need for America?s technological future, will be available for graduate students.Graphene can be nanofabricated into arrays of conformable, stretchable transistors using techniques borrowed from the Japanese paper art of kirigami. Prior work of this research team has shown that unlike traditional electronic devices, such graphene transistors are both extremely flexible and can stretch by 100% without degrading their electrical properties. The current project will investigate the electrical and mechanical interactions between kirigami graphene and individual neurons. Graphene will be cut into different patterns to optimize the mechanical contact between graphene and single neurons. Wrapping of graphene on the neuron will be maximized and the graphene will be used to measure voltage spikes produced by individual neurons, both in vitro and in vivo. With optimized conformal contact between graphene and neurons it will be possible to measure a large fraction of the intracellular potential (~ 70 mV). The semiconducting properties of graphene will also be used to amplify the bioelectronic signals to robust levels to facilitate multiplexed detection of thousands of neuron signals.
该奖项是由生物科学理事会(BIO)的两个项目--生物研究仪器开发项目(IDBR)和新兴前沿项目(EF)联合颁发的。扩大我们对大脑的了解的一个关键障碍是,现有的探测大脑功能的工具根本无法胜任这项任务。用于记录神经信号的技术允许最多记录来自数十或数百个神经元的信号,而需要数千甚至数百万个神经元。为了应对这一挑战,需要改进类型的传感器,以更高的信号质量记录神经活动,并且比当前方法更适合并行记录。该合作项目将开发一种基于柔性石墨烯晶体管的新型传感器。石墨烯是碳原子的原子级薄片,其表现出用于与生物系统接口的期望的物理、化学和电学性质。然而,石墨烯晶体管用于单神经元传感的使用在很大程度上是未开发的。悬而未决的问题包括神经元和石墨烯之间接触的性质,电信号的最终强度,以及石墨烯电极在大脑中的长期生物相容性。我们拟议的工作将解决这些基本问题。如果成功,该项目最终将带来社会效益,例如更好的神经修复术和神经系统疾病的新疗法。纳米和神经科学界面的培训机会,美国需要的一个关键领域?石墨烯可以被纳米制造成一排整齐的、可拉伸的晶体管,这种技术可以借鉴日本的纸艺术kirigami。该研究小组先前的工作表明,与传统电子器件不同,这种石墨烯晶体管非常灵活,可以100%拉伸而不会降低其电气性能。目前的项目将研究kirigami石墨烯和单个神经元之间的电和机械相互作用。石墨烯将被切割成不同的图案,以优化石墨烯与单个神经元之间的机械接触。石墨烯在神经元上的包裹将被最大化,并且石墨烯将用于测量由单个神经元在体外和体内产生的电压尖峰。通过石墨烯和神经元之间的优化共形接触,将有可能测量大部分细胞内电位(~ 70 mV)。石墨烯的半导体特性也将用于将生物电子信号放大到强大的水平,以促进对数千个神经元信号的多路检测。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ethan Minot其他文献
Ethan Minot的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ethan Minot', 18)}}的其他基金
Collaborative Research: One-Dimensional Correlated and Topological Electronic States in Ultra-Clean Carbon Nanotubes
合作研究:超洁净碳纳米管中的一维关联和拓扑电子态
- 批准号:
2004968 - 财政年份:2020
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Beyond the Shockley-Queisser Limit: Understanding and Controlling Carrier Multiplication in Carbon Nanotube PN Junctions
超越 Shockley-Queisser 极限:理解和控制碳纳米管 PN 结中的载流子倍增
- 批准号:
1709800 - 财政年份:2017
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
CAREER: Modifying Electron-Electron Interactions to Control the Optical and Electronic Properties of Carbon Nanotubes
职业:改变电子-电子相互作用以控制碳纳米管的光学和电子特性
- 批准号:
1151369 - 财政年份:2012
- 资助金额:
$ 10万 - 项目类别:
Continuing Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Extreme Mechanics of the Human Brain via Integrated In Vivo and Ex Vivo Mechanical Experiments
合作研究:通过体内和离体综合力学实验研究人脑的极限力学
- 批准号:
2331294 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Collaborative Research: Extreme Mechanics of the Human Brain via Integrated In Vivo and Ex Vivo Mechanical Experiments
合作研究:通过体内和离体综合力学实验研究人脑的极限力学
- 批准号:
2331295 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Collaborative Research: Extreme Mechanics of the Human Brain via Integrated In Vivo and Ex Vivo Mechanical Experiments
合作研究:通过体内和离体综合力学实验研究人脑的极限力学
- 批准号:
2331296 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
BIGDATA: IA: Collaborative Research: Asynchronous Distributed Machine Learning Framework for Multi-Site Collaborative Brain Big Data Mining
BIGDATA:IA:协作研究:用于多站点协作大脑大数据挖掘的异步分布式机器学习框架
- 批准号:
2348159 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Collaborative Research: NCS-FO: Dynamic Brain Graph Mining
合作研究:NCS-FO:动态脑图挖掘
- 批准号:
2319450 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Continuing Grant
Collaborative Research: NCS-FO: Dynamic Brain Graph Mining
合作研究:NCS-FO:动态脑图挖掘
- 批准号:
2319451 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Collaborative Research: NCS-FO: Dynamic Brain Graph Mining
合作研究:NCS-FO:动态脑图挖掘
- 批准号:
2319449 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Collaborative Research: SaTC: CORE: Small: Securing Brain-inspired Hyperdimensional Computing against Design-time and Run-time Attacks for Edge Devices
协作研究:SaTC:核心:小型:保护类脑超维计算免受边缘设备的设计时和运行时攻击
- 批准号:
2326597 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Continuing Grant
Collaborative Research: SaTC: CORE: Small: Securing Brain-inspired Hyperdimensional Computing against Design-time and Run-time Attacks for Edge Devices
协作研究:SaTC:核心:小型:保护类脑超维计算免受边缘设备的设计时和运行时攻击
- 批准号:
2326598 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Continuing Grant
Collaborative Research: MEMONET: Understanding memory in neuronal networks through a brain-inspired spin-based artificial intelligence
合作研究:MEMONET:通过受大脑启发的基于自旋的人工智能了解神经元网络中的记忆
- 批准号:
2308924 - 财政年份:2022
- 资助金额:
$ 10万 - 项目类别:
Continuing Grant