EAGER: An Interactive Learning Analytics Framework based on a Student Sequence Model for understanding students, retention, and time to graduation
EAGER:基于学生序列模型的交互式学习分析框架,用于了解学生、保留率和毕业时间
基本信息
- 批准号:1820862
- 负责人:
- 金额:$ 29.85万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-08-01 至 2021-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This is a project to personalize academic advising with the goal of better identification of student risk and success in retention and graduation in higher education. The personalization is accomplished through the development of an interactive system using a novel approach to data modeling. The advisor is given the sequence of courses, labs, and sections that the student has taken, along with grades and any other assessment data that is available. This information is then fed to a data mining application that identifies the degree of success that the student has had and a prediction of any additional assistance the student may require in order to achieve academic success. The data mining application uses machine learning technology and interactive input from faculty, advisors, and academic leadership to accurately model student achievements.More precisely, the interactive framework enables the discovery of actionable knowledge to improve student success by including the domain experts in data-driven discovery and decision-making from heterogeneous and longitudinal student data. The approach is to integrate and iterate the feature extraction, analytics, and interpretation processes within a single interactive user experience. Through the use of explorative interactive visualization of data and data patterns, the target user communities, including academic leadership, faculty, and advisors will be empowered to explore a broader range of meaningful hypotheses and derive specific actionable insights given the large and complex data that is being collected about students' performance and campus life. This will transform the ability to create policy, curriculum changes, and interventions that can address specific critical issues in universities more proactively than traditional analyses can provide for affecting retention, time to graduation, and student success.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这是一个个性化的学术咨询项目,目的是更好地识别学生在留校和毕业过程中的风险和成功。个性化是通过使用一种新的数据建模方法开发的交互系统来实现的。辅导员将获得学生所选课程、实验和部分的顺序,以及成绩和任何其他可用的评估数据。然后,这些信息被提供给数据挖掘应用程序,该应用程序识别学生的成功程度,并预测学生为了取得学业成功可能需要的任何额外帮助。数据挖掘应用程序使用机器学习技术和来自教师、导师和学术领导层的交互输入来准确地模拟学生的成绩。更准确地说,交互框架通过将领域专家包括在从异类和纵向学生数据中的数据驱动的发现和决策中,使得能够发现可操作的知识以提高学生的成功。该方法是在单一的交互式用户体验中集成和迭代特征提取、分析和解释过程。通过使用数据和数据模式的探索性交互式可视化,目标用户社区,包括学术领导层、教师和顾问,将被授权探索更广泛的有意义的假设,并根据正在收集的关于学生表现和校园生活的大量而复杂的数据得出具体的可操作的见解。这将改变制定政策、课程改革和干预措施的能力,这些政策、课程改革和干预措施可以更主动地解决大学中的特定关键问题,而不是传统的分析可以提供的影响留校、毕业时间和学生成功的能力。这一奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Framework for Interactive Exploratory Learning Analytics
- DOI:10.1007/978-3-319-91152-6_25
- 发表时间:2018-07
- 期刊:
- 影响因子:0
- 作者:M. Mahzoon;M. Maher;Omar Eltayeby;Wenwen Dou;Kazjon Grace
- 通讯作者:M. Mahzoon;M. Maher;Omar Eltayeby;Wenwen Dou;Kazjon Grace
Making Sense of Student Success and Risk through Unsupervised Learning and Interactive Storytelling
通过无监督学习和互动讲故事了解学生的成功和风险
- DOI:
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Ahmad Al-Doulat, Nur
- 通讯作者:Ahmad Al-Doulat, Nur
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mary Lou Maher其他文献
Enabling Investigation of Impacts of Inclusive Collaborative Active Learning Practices on Intersectional Groups of Students in Computing Education
调查包容性协作主动学习实践对计算机教育中交叉学生群体的影响
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Sri Yash Tadimalla;Celine Latulipe;Mary Lou Maher;Marlon Mejias;Jamie Payton;A. Rorrer;John Fiore;G. Kwatny;Andrew Rosen - 通讯作者:
Andrew Rosen
Risks and benefits of mass screening for colorectal neoplasia with the stool guaiac test
通过粪便愈创木脂试验大规模筛查结直肠肿瘤的风险和益处
- DOI:
- 发表时间:
1983 - 期刊:
- 影响因子:0
- 作者:
D. Winchester;Joanne Sylvester;Mary Lou Maher - 通讯作者:
Mary Lou Maher
An Exploratory Study on the Impact of AI tools on the Student Experience in Programming Courses: an Intersectional Analysis Approach
人工智能工具对学生编程课程体验影响的探索性研究:交叉分析方法
- DOI:
10.1109/fie58773.2023.10343037 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Mary Lou Maher;Sri Yash Tadimalla;Dhruv Dhamani - 通讯作者:
Dhruv Dhamani
Implications of Identity in AI: Creators, Creations, and Consequences
人工智能中身份的含义:创造者、创造和后果
- DOI:
10.1609/aaaiss.v3i1.31268 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Sri Yash Tadimalla;Mary Lou Maher - 通讯作者:
Mary Lou Maher
A Grassroots Mammography Demonstration Project Targeted to Medically Underserved Rural and Urban Illinois Women of Diverse Races and Ethnicity
针对医疗服务不足的伊利诺伊州农村和城市不同种族和族裔妇女的草根乳房X光检查示范项目
- DOI:
10.1111/j.1524-4741.1997.tb00137.x - 发表时间:
1997 - 期刊:
- 影响因子:0
- 作者:
Lola Flamm;Arthur G. Michel;H. J. Lasky;Mary Lou Maher;Joanne Sylvester;Stephen F. Sener - 通讯作者:
Stephen F. Sener
Mary Lou Maher的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mary Lou Maher', 18)}}的其他基金
Conference: NSF Workshop: Expanding Capacity and Diversity in AI Education
会议:NSF 研讨会:扩大人工智能教育的能力和多样性
- 批准号:
2330257 - 财政年份:2023
- 资助金额:
$ 29.85万 - 项目类别:
Standard Grant
Examining the Effects of Course Climate, Active Learning, and Intersectional Identities on Undergraduate Student Success in Computing
检查课程气氛、主动学习和交叉身份对本科生计算机成功的影响
- 批准号:
2111376 - 财政年份:2021
- 资助金额:
$ 29.85万 - 项目类别:
Standard Grant
I-Corps: Digital Platform for Informal Learning Experiences to Encourage Curiosity in STEM Career Paths
I-Corps:提供非正式学习体验的数字平台,鼓励对 STEM 职业道路的好奇心
- 批准号:
2031900 - 财政年份:2020
- 资助金额:
$ 29.85万 - 项目类别:
Standard Grant
Collaborative Research: Developing a Systemic, Scalable Model to Broaden Participation in Middle School Computer Science
合作研究:开发系统的、可扩展的模型以扩大中学计算机科学的参与
- 批准号:
1837240 - 财政年份:2018
- 资助金额:
$ 29.85万 - 项目类别:
Standard Grant
RI: Small: CompCog: Pique: A Cognitive Model of Curiosity for Personalizing Sequences of Learning Resources
RI:小:CompCog:Pique:用于个性化学习资源序列的好奇心认知模型
- 批准号:
1618810 - 财政年份:2016
- 资助金额:
$ 29.85万 - 项目类别:
Standard Grant
IUSE/PFE:RED: The Connected Learner: Design Patterns for Transforming Computing and Informatics Education
IUSE/PFE:RED:互联学习者:变革计算和信息学教育的设计模式
- 批准号:
1519160 - 财政年份:2015
- 资助金额:
$ 29.85万 - 项目类别:
Standard Grant
AISL: Innovations in Development: Community-Driven Projects That Adapt Technology for Environmental Learning in Nature Preserves
AISL:发展创新:社区驱动的项目,采用自然保护区环境学习技术
- 批准号:
1423212 - 财政年份:2015
- 资助金额:
$ 29.85万 - 项目类别:
Continuing Grant
EAGER: Collaborative Research: A Computational Model for Evaluating the Quality of Citizen Science Contributions
EAGER:协作研究:评估公民科学贡献质量的计算模型
- 批准号:
1451079 - 财政年份:2014
- 资助金额:
$ 29.85万 - 项目类别:
Standard Grant
VOSS: Crowdsourcing interaction design for citizen science virtual organizations
VOSS:公民科学虚拟组织的众包交互设计
- 批准号:
1221513 - 财政年份:2012
- 资助金额:
$ 29.85万 - 项目类别:
Standard Grant
HCC: Small: Designing Tangible Computing for Creativity
HCC:小型:为创造力设计有形计算
- 批准号:
1218160 - 财政年份:2012
- 资助金额:
$ 29.85万 - 项目类别:
Continuing Grant
相似海外基金
Development of an Ultra-sensitive Drumhead together with interactive Learning Apps for Electronic Drums.
开发超灵敏鼓皮以及电子鼓的交互式学习应用程序。
- 批准号:
10091335 - 财政年份:2024
- 资助金额:
$ 29.85万 - 项目类别:
Collaborative R&D
I-Corps: Translation potential of using artificial intelligence (AI) for an interactive and inclusive language-learning process designed for young children
I-Corps:使用人工智能 (AI) 为幼儿设计的交互式和包容性语言学习过程的翻译潜力
- 批准号:
2418277 - 财政年份:2024
- 资助金额:
$ 29.85万 - 项目类别:
Standard Grant
HCC: Medium: Optimizing Interactive Machine Learning Tools to Support Plant Scientists using Human Centered Design
HCC:中:优化交互式机器学习工具以支持植物科学家使用以人为本的设计
- 批准号:
2312643 - 财政年份:2023
- 资助金额:
$ 29.85万 - 项目类别:
Standard Grant
Empirical Study of the Effects of Interactive Learning on Learners' Logical Thinking
互动学习对学习者逻辑思维影响的实证研究
- 批准号:
23K02775 - 财政年份:2023
- 资助金额:
$ 29.85万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Collaborative Research: Adaptable Game-based, Interactive Learning Environments for STEM Education (AGILE STEM)
协作研究:适用于 STEM 教育的适应性强、基于游戏的交互式学习环境 (AGILE STEM)
- 批准号:
2302815 - 财政年份:2023
- 资助金额:
$ 29.85万 - 项目类别:
Standard Grant
Collaborative Research: Adaptable Game-based, Interactive Learning Environments for STEM Education (AGILE STEM)
协作研究:适用于 STEM 教育的适应性强、基于游戏的交互式学习环境 (AGILE STEM)
- 批准号:
2302814 - 财政年份:2023
- 资助金额:
$ 29.85万 - 项目类别:
Standard Grant
2 Electronic educational interactive learning pads for children teaching Arabic Alphabet and verses from the Quran
2 个电子教育互动学习垫,供儿童教授阿拉伯字母和《古兰经》经文
- 批准号:
10059747 - 财政年份:2023
- 资助金额:
$ 29.85万 - 项目类别:
Grant for R&D
Research on development of non-interactive MPC capable of addition and deletion of parties and its application to machine learning
可增删方的非交互式MPC开发及其在机器学习中的应用研究
- 批准号:
23K11109 - 财政年份:2023
- 资助金额:
$ 29.85万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
CRII: SCH: Developing a new hybrid interactive machine learning software tool for cancer researchers
CRII:SCH:为癌症研究人员开发一种新的混合交互式机器学习软件工具
- 批准号:
2409704 - 财政年份:2023
- 资助金额:
$ 29.85万 - 项目类别:
Standard Grant
Collaborative Research: Adaptable Game-based, Interactive Learning Environments for STEM Education (AGILE STEM)
协作研究:适用于 STEM 教育的适应性强、基于游戏的交互式学习环境 (AGILE STEM)
- 批准号:
2302813 - 财政年份:2023
- 资助金额:
$ 29.85万 - 项目类别:
Standard Grant














{{item.name}}会员




