The Implicit Content of Sluicing

泄洪的隐含内容

基本信息

  • 批准号:
    1451819
  • 负责人:
  • 金额:
    $ 37.56万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-06-01 至 2019-11-30
  • 项目状态:
    已结题

项目摘要

In planning their linguistic expressions, speakers and writers are often able to leave out informationally redundant grammatical material, such as when the verb "call" is omitted in "Fred called, but Sheila didn't". This process, known as ellipsis, is widespread across the languages of the world, and is particularly common in informal language and dialogue. Among the many varieties of ellipsis is sluicing, where what is omitted is not a verb but an entire sentence. For example, a speaker may choose to leave out the understood sentence "he called" after "why" in a sentence like: "He called, but I don't know why".Ellipsis poses challenging scientific and engineering problems. Research over the past 50 or 60 years has demonstrated that the principles permitting ellipsis involve many different kinds of information (grammatical structure, the dynamics of the discourse context, and real-world knowledge), but the precise character of these principles and their interaction is still an open question. Progress has been hampered by the lack of a crucial resource type: databases of felicitous uses of ellipsis that are large enough to validate theories against, and rich enough to form the basis for machine learning.The first goal of this project is to build such a database for sluicing and to make it freely available to language scientists and engineers. This resource will be a large, curated corpus of naturally occurring ellipses, annotated at a level of sophistication that will allow a range of analytic questions to be probed quantitatively. As the curation and annotation proceed, patterns that emerge from the data will be used to investigate the interplay between grammar and context that makes ellipsis possible. Since ellipsis is a pervasive feature of human language, to better understand how it works is to better understand the nature of human linguistic behavior itself. This project should also stimulate technological innovation in an area of urgent need: in designing more sophisticated systems for interfacing with natural human conversation, which is replete with ellipses of every kind.
在计划他们的语言表达时,说话者和作家经常能够省略信息上多余的语法材料,例如当动词“call”在“Fred call,But Sheila‘t”中被省略时。这一过程被称为省略,在世界各地的语言中普遍存在,在非正式语言和对话中尤为常见。在许多省略中有一种是省略,省略的不是动词,而是整个句子。例如,演讲者可能会选择省略理解的句子“他叫了,但我不知道为什么”中的“为什么”之后的“他叫”。省略号提出了具有挑战性的科学和工程问题。过去50或60年的研究表明,允许省略的原则涉及许多不同类型的信息(语法结构、语篇语境的动态和现实世界的知识),但这些原则的确切特征及其相互作用仍然是一个悬而未决的问题。由于缺乏一种重要的资源类型,进展受到了阻碍:省略的恰当使用的数据库足够大,足以验证理论,足够丰富,足以形成机器学习的基础。这个项目的第一个目标是建立这样一个用于冲刷的数据库,并向语言科学家和工程师免费提供。这一资源将是一个自然产生的省略的大型精选语料库,在一定程度上进行注释,将允许对一系列分析问题进行定量探讨。随着精选和注释的进行,从数据中出现的模式将被用来调查语法和语境之间的相互作用,从而使省略成为可能。由于省略是人类语言的一个普遍特征,更好地理解它是如何工作的就是更好地理解人类语言行为本身的本质。这个项目还应该刺激一个迫切需要的领域的技术创新:设计更复杂的系统,用于与自然的人类对话进行交互,其中充满了各种省略。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Pranav Anand其他文献

Triangular line graphs and word sense disambiguation
  • DOI:
    10.1016/j.dam.2011.03.019
  • 发表时间:
    2011-07-06
  • 期刊:
  • 影响因子:
  • 作者:
    Pranav Anand;Henry Escuadro;Ralucca Gera;Craig Martell
  • 通讯作者:
    Craig Martell
De de se
德德瑟
  • DOI:
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Pranav Anand
  • 通讯作者:
    Pranav Anand

Pranav Anand的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Native, non-native or artificial phonetic content for pronunciation education: representations and perception in the case of L2 French
用于发音教育的母语、非母语或人工语音内容:以法语 L2 为例的表征和感知
  • 批准号:
    24K00093
  • 财政年份:
    2024
  • 资助金额:
    $ 37.56万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
An innovative, AI-driven application that helps users assess/action information pollution for social media content.
一款创新的人工智能驱动应用程序,可帮助用户评估/消除社交媒体内容的信息污染。
  • 批准号:
    10100049
  • 财政年份:
    2024
  • 资助金额:
    $ 37.56万
  • 项目类别:
    Collaborative R&D
CAREER: Optoelectronic lab-on-a-chip technology for high content automated multiparametric physiological analyses of live cells
职业:用于活细胞高内涵自动化多参数生理分析的光电芯片实验室技术
  • 批准号:
    2339030
  • 财政年份:
    2024
  • 资助金额:
    $ 37.56万
  • 项目类别:
    Continuing Grant
Sustainable Remanufacturing solution with increased automation and recycled content in laser and plasma based process (RESTORE)
可持续再制造解决方案,在基于激光和等离子的工艺中提高自动化程度和回收内容(RESTORE)
  • 批准号:
    10112149
  • 财政年份:
    2024
  • 资助金额:
    $ 37.56万
  • 项目类别:
    EU-Funded
Postdoctoral Fellowship: STEMEdIPRF: Pedagogical Content Knowledge for Course-based Undergraduate Research Instruction
博士后奖学金:STEMEdIPRF:基于课程的本科生研究教学的教学内容知识
  • 批准号:
    2327187
  • 财政年份:
    2024
  • 资助金额:
    $ 37.56万
  • 项目类别:
    Standard Grant
RESTORE Sustainable Remanufacturing solution with increased automation and recycled content in laser and plasmabased process.
RESTORE 可持续再制造解决方案,在激光和等离子工艺中提高自动化程度和回收内容。
  • 批准号:
    10109638
  • 财政年份:
    2024
  • 资助金额:
    $ 37.56万
  • 项目类别:
    EU-Funded
WITHIN TOUCHING DISTANCE brings together artistic & technological innovation to explore how arts-based therapeutic content can be combined with XR.
触手可及的距离汇聚了艺术
  • 批准号:
    ES/Y011082/1
  • 财政年份:
    2024
  • 资助金额:
    $ 37.56万
  • 项目类别:
    Research Grant
Imaging/High content screening system
成像/高内涵筛选系统
  • 批准号:
    520854718
  • 财政年份:
    2023
  • 资助金额:
    $ 37.56万
  • 项目类别:
    Major Research Instrumentation
OpenAI API Lesson content generator with localised careers signposting
具有本地化职业路标的 OpenAI API 课程内容生成器
  • 批准号:
    10082614
  • 财政年份:
    2023
  • 资助金额:
    $ 37.56万
  • 项目类别:
    Collaborative R&D
Using AR and AI-driven analytics to personalise wellbeing content in a social board game context
使用 AR 和 AI 驱动的分析在社交棋盘游戏环境中个性化健康内容
  • 批准号:
    10056428
  • 财政年份:
    2023
  • 资助金额:
    $ 37.56万
  • 项目类别:
    Collaborative R&D
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了