CAREER: A Data-Driven Network Inference Framework for Context-Conditioned Protein Interaction Graphs

职业:上下文条件蛋白质相互作用图的数据驱动网络推理框架

基本信息

  • 批准号:
    1453580
  • 负责人:
  • 金额:
    $ 49.66万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-08-15 至 2020-07-31
  • 项目状态:
    已结题

项目摘要

Biological systems can be studied as graphs, where nodes represent entities (e.g., proteins) and edges represent interactions (e.g., physical binding, functional dependency). The identification of important protein interaction networks enables new insights into principles of life, evolution change, disease study, and drug development. The network wiring and function of a protein interaction graph is determined by context: genetics, environment, and small molecules such as drugs. However, almost all protein interaction networks, to date, have been examined under a single static condition, due to limitations of biotechnologies for graph data collection. Therefore, the research objective of this proposal is to design novel and efficient machine-learning algorithms to identify context-specific protein interaction graphs. Identifying context-specific protein networks has biomedical applications of social importance, such as studying cellular developments across multiple cell stages or investigating cellular changes with different drug treatments in the context of leukemia. Both applications will be explored as evaluation components of the project through collaborating with the Center for Public Health Genomics and the Emily Couric Cancer Center at UVA School of Medicine. The proposed research is expected to impact other domains as well, for instance, social-network discovery and condition-specific network inference for brain connectivity. The proposed career plan will result in educational and outreach initiatives that build on the interdisciplinary nature of the research. These plans include: (a) designing new course projects that work on real-life network-inference problems and data; (b) developing novel instructional techniques to train graduate students professional skills such as "how to teach'' or "how to do research" using state-of-the-art structural learning problems as sample projects; (c) involving undergraduates in network learning research through UVA undergraduate capstone projects; (d) increasing awareness of graph-learning research among K-12 students through presentations at the UVA Introduction to Engineering (ITE) Program involving high school students; and (e) enhancing interactions with the UVA Medical School Community, especially through public release and tutorials of computational tools created from this project.The past decade has seen a revolution in genomic technologies that enable the simultaneous measurement of thousands of molecular entities (e.g., genes or proteins). The flood of genome-wide data generated by next-generation sequencing technologies has provided an unprecedented coverage of large-scale, context-conditioned signatures of relevant gene products that have great potential to infer network connectivity and function in each context. The proposal will develop a suite of novel machine-learning methods for inference of context-specific networks from multi-context molecular signature datasets that are high dimensional, heterogeneous and noisy. Aiming to overcome these data challenges, the proposed research includes the following three related tasks: (i) develop new and scalable structural learning algorithms to estimate multiple different but related sparse Gaussian Graphical Models (sGGMs) from data samples aggregated across multiple distinct conditions, (ii) develop novel learning strategies for modeling and detecting modules (i.e., multi-protein groups) within the framework of multitasking sGGMs, (iii) extend the above structural learning models to non-Gaussian cases, semi-supervised settings considering partial-observed networks and supervised disease diagnosis settings. Additional information about the project, including the publications, open-source implementations of algorithms, data sets and educational materials will be shared through the project website: http://www.cs.virginia.edu/yanjun/context_graph/
生物系统可以作为图来研究,其中节点表示实体(例如,蛋白质)和边表示相互作用(例如,物理绑定、功能依赖性)。重要蛋白质相互作用网络的识别使人们对生命、进化变化、疾病研究和药物开发的原理有了新的认识。蛋白质相互作用图的网络连接和功能由背景决定:遗传学,环境和小分子,如药物。然而,几乎所有的蛋白质相互作用网络,到目前为止,已经检查了一个单一的静态条件下,由于生物技术的限制,图形数据收集。因此,本论文的研究目标是设计新颖有效的机器学习算法来识别上下文特异性蛋白质相互作用图。识别上下文特异性蛋白质网络具有社会重要性的生物医学应用,例如研究多个细胞阶段的细胞发育或研究白血病背景下不同药物治疗的细胞变化。这两个应用程序将通过与UVA医学院的公共卫生基因组学中心和艾米丽库里克癌症中心合作,作为该项目的评估组成部分进行探索。预计这项研究也将影响其他领域,例如社交网络发现和大脑连接的特定条件网络推理。拟议的职业计划将导致在研究的跨学科性质的基础上开展教育和外联活动。这些计划包括:(a)设计新的课程项目,研究现实生活中的网络推理问题和数据;(B)开发新的教学技术,以训练研究生的专业技能,如“如何教学”或“如何进行研究”,使用最先进的结构学习问题作为样本项目;(c)通过弗吉尼亚大学本科生顶点项目,让本科生参与网络学习研究;(d)通过在涉及高中生的UVA工程学导论(ITE)项目中的演讲,提高K-12学生对图形学习研究的认识;以及(e)加强与弗吉尼亚大学医学院社区的互动,特别是通过公开发布和教程的计算工具,从这个项目中创建。过去十年中,基因组技术发生了革命其能够同时测量数千个分子实体(例如,基因或蛋白质)。下一代测序技术产生的大量全基因组数据提供了前所未有的大规模、情境条件下的相关基因产物特征,这些特征具有很大的潜力来推断每种情境下的网络连接和功能。 该提案将开发一套新颖的机器学习方法,用于从高维、异构和噪声的多背景分子签名数据集推断特定于背景的网络。为了克服这些数据挑战,所提出的研究包括以下三个相关的任务:(i)开发新的和可扩展的结构学习算法,以从跨多个不同条件聚合的数据样本中估计多个不同但相关的稀疏高斯图形模型(sGGM),(ii)开发用于建模和检测模块的新的学习策略(即,(iii)将上述结构学习模型扩展到非高斯情况、考虑部分观察网络的半监督设置和监督疾病诊断设置。有关该项目的其他信息,包括出版物、算法的开源实现、数据集和教育材料,将通过项目网站分享:http://www.cs.virginia.edu/yanjun/context_graph/

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yanjun Qi其他文献

Characteristics of the Tibetan Plateau vortices and the related large-scale circulations causing different precipitation intensity
青藏高原低涡特征及引起不同降水强度的大尺度环流
  • DOI:
    10.1007/s00704-019-02870-4
  • 发表时间:
    2019-10
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Lun Li;Renhe Zhang;Min Wen;Jianping Duan;Yanjun Qi
  • 通讯作者:
    Yanjun Qi
Suicidal ideation among Chinese survivors of childhood sexual abuse: Associations with rumination and perceived social support.
中国儿童性虐待幸存者的自杀意念:与沉思和感知社会支持的关联。
FastSK: Fast Sequence Analysis with Gapped String Kernels
FastSK:带间隙字符串内核的快速序列分析
  • DOI:
    10.1101/2020.04.21.053975
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Derrick Blakely;E. Collins;Ritambhara Singh;Andrew P. Norton;Jack Lanchantin;Yanjun Qi
  • 通讯作者:
    Yanjun Qi
Interannual relationship between intensity of rainfall intraseasonal oscillation and summer-mean rainfall over Yangtze River Basin in eastern China
  • DOI:
    https://doi.org/10.1007/s00382-019-04680-w
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
  • 作者:
    Yanjun Qi;Tim Li;Renhe Zhang;Yang Chen
  • 通讯作者:
    Yang Chen
A constrained $$\ell $$ 1 minimization approach for estimating multiple sparse Gaussian or nonparanormal graphical models
  • DOI:
    10.1007/s10994-017-5635-7
  • 发表时间:
    2017-06-21
  • 期刊:
  • 影响因子:
    2.900
  • 作者:
    Beilun Wang;Ritambhara Singh;Yanjun Qi
  • 通讯作者:
    Yanjun Qi

Yanjun Qi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yanjun Qi', 18)}}的其他基金

SaTC: CORE: Small: Generalizing Adversarial Examples in Natural Language
SaTC:核心:小:概括自然语言中的对抗性示例
  • 批准号:
    2124538
  • 财政年份:
    2022
  • 资助金额:
    $ 49.66万
  • 项目类别:
    Standard Grant
TWC: Small: Automatic Techniques for Evaluating and Hardening Machine Learning Classifiers in the Presence of Adversaries
TWC:小型:在对手存在的情况下评估和强化机器学习分类器的自动技术
  • 批准号:
    1619098
  • 财政年份:
    2016
  • 资助金额:
    $ 49.66万
  • 项目类别:
    Standard Grant

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队
Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国青年学者研究基金项目
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:
基于Linked Open Data的Web服务语义互操作关键技术
  • 批准号:
    61373035
  • 批准年份:
    2013
  • 资助金额:
    77.0 万元
  • 项目类别:
    面上项目
Molecular Interaction Reconstruction of Rheumatoid Arthritis Therapies Using Clinical Data
  • 批准号:
    31070748
  • 批准年份:
    2010
  • 资助金额:
    34.0 万元
  • 项目类别:
    面上项目
高维数据的函数型数据(functional data)分析方法
  • 批准号:
    11001084
  • 批准年份:
    2010
  • 资助金额:
    16.0 万元
  • 项目类别:
    青年科学基金项目
染色体复制负调控因子datA在细胞周期中的作用
  • 批准号:
    31060015
  • 批准年份:
    2010
  • 资助金额:
    25.0 万元
  • 项目类别:
    地区科学基金项目
Computational Methods for Analyzing Toponome Data
  • 批准号:
    60601030
  • 批准年份:
    2006
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CAREER: Data-Driven Hardware and Software Techniques to Enable Sustainable Data Center Services
职业:数据驱动的硬件和软件技术,以实现可持续的数据中心服务
  • 批准号:
    2340042
  • 财政年份:
    2024
  • 资助金额:
    $ 49.66万
  • 项目类别:
    Continuing Grant
CAREER: A Universal Framework for Safety-Aware Data-Driven Control and Estimation
职业:安全意识数据驱动控制和估计的通用框架
  • 批准号:
    2340089
  • 财政年份:
    2024
  • 资助金额:
    $ 49.66万
  • 项目类别:
    Standard Grant
CAREER: Design of Cellular Mechanical Metamaterials under Uncertainty with Physics-Informed and Data-Driven Machine Learning
职业:利用物理信息和数据驱动的机器学习在不确定性下设计细胞机械超材料
  • 批准号:
    2236947
  • 财政年份:
    2023
  • 资助金额:
    $ 49.66万
  • 项目类别:
    Standard Grant
CAREER: Data-driven Multiscale Modeling of Complex Traffic Systems Utilizing Networked Driving Simulators
职业:利用网络驾驶模拟器对复杂交通系统进行数据驱动的多尺度建模
  • 批准号:
    2238359
  • 财政年份:
    2023
  • 资助金额:
    $ 49.66万
  • 项目类别:
    Standard Grant
CAREER: Data-driven design of graphene oxide for environmental applications enabled by natural language processing and machine learning techniques
职业:通过自然语言处理和机器学习技术实现氧化石墨烯环境应用的数据驱动设计
  • 批准号:
    2238415
  • 财政年份:
    2023
  • 资助金额:
    $ 49.66万
  • 项目类别:
    Continuing Grant
CAREER: A Holistic Developer-Centered Approach to Enhance Privacy for Data-Driven Applications
职业:以开发人员为中心的整体方法来增强数据驱动应用程序的隐私
  • 批准号:
    2238047
  • 财政年份:
    2023
  • 资助金额:
    $ 49.66万
  • 项目类别:
    Continuing Grant
CAREER: Machine Learning for Data-Driven Fault-Tolerant Control of Complex Systems
职业:用于复杂系统数据驱动容错控制的机器学习
  • 批准号:
    2426614
  • 财政年份:
    2023
  • 资助金额:
    $ 49.66万
  • 项目类别:
    Standard Grant
CAREER: Data-driven dynamic adaptive optimization for next generation power system operation
职业:数据驱动的下一代电力系统运行的动态自适应优化
  • 批准号:
    2316675
  • 财政年份:
    2023
  • 资助金额:
    $ 49.66万
  • 项目类别:
    Standard Grant
CAREER: Building long-term climate resilience in 21st-century regional urban land systems through integrated data-driven research and education
职业:通过综合数据驱动的研究和教育,在 21 世纪区域城市土地系统中建立长期的气候适应能力
  • 批准号:
    2239859
  • 财政年份:
    2023
  • 资助金额:
    $ 49.66万
  • 项目类别:
    Continuing Grant
CAREER: Data-Driven Control of High-Rate Dynamic Systems
职业:高速动态系统的数据驱动控制
  • 批准号:
    2237696
  • 财政年份:
    2023
  • 资助金额:
    $ 49.66万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了