CAREER: Hexagonal Ferrite Thin Films for the High-Temperature Magnetoelectric Memory Effect

职业:用于高温磁电记忆效应的六方铁氧体薄膜

基本信息

  • 批准号:
    1454618
  • 负责人:
  • 金额:
    $ 59.13万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-09-01 至 2021-08-31
  • 项目状态:
    已结题

项目摘要

NON-TECHNICAL SUMMARYThe discovery and utilization of the dynamic coupling between the electric and magnetic fields - electromagnetic waves - has revolutionized human society, particularly in the wireless communications. The "static" couplings between the electric and magnetic fields in a material (e.g. switching the north and south poles of a magnet using an electric field) are expected to have major applications in compact and energy efficient information storage and processing, sensors, and actuators. These applications are desired since the demand for information storage and processing is ever increasing while the capabilities of current technology are being exhausted. This Faculty Early Career Development (CAREER) project explores the possible static couplings between the electric and magnetic fields in new materials, such as hexagonal ferrites, by elucidating the connections between their electric, magnetic, and structural properties, and fine-tuning the materials using advanced material preparations. Integrated with the research, the educational objectives of this project are, to promote teaching undergraduate students fundamental physics by exposing them to cutting-edge research and by exploiting new student-centered pedagogical approaches, to mentor and inspire student researchers with systematic trainings for innovative research, and to engage K-12 students to stimulate their interests in science.TECHNICAL SUMMARY Switching a magnetic dipole using an electric field (magnetoelectric memory effect) - an effect that can be a working principle of the next-generation technology for information processing and storage - is unfortunately rare in known materials and restricted to low temperature. This Faculty Early Career Development (CAREER) project explores the magnetoelectric memory effect that is efficient and stable at high temperature, by the discovery of new materials or by tuning the properties of known materials experimentally. In particular, this project investigates the possible magnetoelectric memory effect in the materials that exhibit both improper ferroelectricity and improper ferromagnetism, such as hexagonal ferrites (h-RFeO3; R =Y, Ho, Lu). The specific research objectives of the proposed work are: 1) Elucidate the origin of the magnetic orderings in hexagonal ferrites. 2) Experimentally determine the magnetoelectric effect and identify the underlying mechanism in hexagonal ferrites. 3) Adjust the magnetic properties and the coupling between the magnetic and electric properties in hexagonal ferrites by tuning their structures using epitaxial thin film growth. Pulsed laser deposition method is employed to prepare single crystalline epitaxial thin film materials of tuned structures. The details of magnetic, electronic, and lattice structures are investigated using neutron scattering, x-ray spectroscopy, and x-ray diffraction respectively. The couplings between the electric and magnetic properties are studied by measuring the change of ferromagnetic properties in an electric field. Besides advancing the understanding in the magnetoelectric couplings in complex oxides in general, the success of the project may experimentally establish a new paradigm of magnetoelectric effect originated from improper ferroelectricity and improper ferromagnetism
电场和磁场之间的动态耦合——电磁波的发现和利用给人类社会带来了革命性的变化,特别是在无线通信领域。材料中电场和磁场之间的“静态”耦合(例如,使用电场切换磁铁的南北两极)预计将在紧凑和节能的信息存储和处理、传感器和执行器中有主要应用。由于对信息存储和处理的需求不断增加,而当前技术的能力正在耗尽,因此需要这些应用程序。这个学院早期职业发展(Career)项目探索了新材料(如六方铁氧体)中电场和磁场之间可能的静态耦合,通过阐明它们的电、磁和结构特性之间的联系,并使用先进的材料制备对材料进行微调。结合本研究,本项目的教育目标是:通过前沿研究和探索以学生为中心的新教学方法,促进本科生基础物理教学;通过系统的创新研究训练,指导和激励学生研究人员;并吸引K-12学生激发他们对科学的兴趣。技术总结:利用电场开关磁偶极子(磁电记忆效应)——这种效应可以成为下一代信息处理和存储技术的工作原理——不幸的是,在已知材料中很少见,而且仅限于低温。这个学院早期职业发展(Career)项目通过发现新材料或通过实验调整已知材料的特性,探索在高温下高效和稳定的磁电记忆效应。特别地,本项目研究了六方铁氧体(h-RFeO3; R =Y, Ho, Lu)等具有非正常铁电性和非正常铁磁性的材料中可能存在的磁电记忆效应。本文的具体研究目标是:1)阐明六方铁氧体磁性有序的起源。2)实验确定了六方铁氧体的磁电效应,并确定了其潜在的机制。3)采用外延薄膜生长的方法,通过调整六方铁氧体的结构来调整其磁性能以及磁性能和电性能之间的耦合。采用脉冲激光沉积法制备了调谐结构的单晶外延薄膜材料。利用中子散射、x射线光谱学和x射线衍射分别研究了磁性、电子和晶格结构的细节。通过测量铁磁特性在电场作用下的变化,研究了材料的电、磁特性之间的耦合关系。该项目的成功除了促进了对复杂氧化物中磁电耦合的理解外,还可能在实验上建立一个由非正常铁电性和非正常铁磁性引起的磁电效应的新范式

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Xiaoshan Xu其他文献

Anti-site mixing and magnetic properties of Fe3Co3Nb2 studied via neutron powder diffraction
中子粉末衍射研究Fe3Co3Nb2的反位点混合和磁性能
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xiaoshan Xu;Xiaozhe Zhang;Xiaozhe Zhang;Yuewei Yin;B. Balasubramanian;B. Das;Yaohua Liu;A. Huq;D. Sellmyer
  • 通讯作者:
    D. Sellmyer
Absence of Metallic Behavior in Epitaxial NiCo2O4 Thin Films: Role of Microstructural Disorder
外延 NiCo2O4 薄膜中金属行为的缺失:微观结构紊乱的作用
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    C. Zhen;Xiaozhe Zhang;Wengang Wei;Wenzhe Guo;Ankita Pant;Xiaoshan Xu;Jian Shen;Li Ma;D. Hou
  • 通讯作者:
    D. Hou
Persistent Ionic Photo-responses and Frank-Condon Mechanism in Proton-transfer Ferroelectrics
质子转移铁电体中的持久离子光响应和弗兰克-康登机制
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xuanyuan Jiang;Xiao Wang;P. Buragohain;Andy T. Clark;Haidong Lu;S. Poddar;Le Yu;A. DiChiara;A. Gruverman;Xuemei Cheng;Xiaoshan Xu
  • 通讯作者:
    Xiaoshan Xu
Experimental Determination of Ionicity in MnO Nanoparticles
MnO 纳米颗粒离子度的实验测定
  • DOI:
    10.1021/cm200582t
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    Q.;Xiaoshan Xu;Sheila N. Baker;A. Christianson;J. Musfeldt
  • 通讯作者:
    J. Musfeldt
Anisotropic Optical and Magnetic Response in Self-Assembled Tin-Cofe2 Nanocomposites
自组装锡钴纳米复合材料中的各向异性光学和磁响应
  • DOI:
    10.2139/ssrn.4267111
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Haiyan Wang;Jiawei Song;Di Zhang;Ping Lu;Haohan Wang;Xiaoshan Xu;M. Meyerson;S. G. Rosenberg;J. Deitz;Juncheng Liu;Xuejing Wang;Xinghang Zhang
  • 通讯作者:
    Xinghang Zhang

Xiaoshan Xu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Xiaoshan Xu', 18)}}的其他基金

Microstructure and strain effects on ferroelectric and transport properties of hafnium oxide thin films
微观结构和应变对氧化铪薄膜铁电和输运性能的影响
  • 批准号:
    1917635
  • 财政年份:
    2019
  • 资助金额:
    $ 59.13万
  • 项目类别:
    Standard Grant

相似海外基金

Hexagonal Perovskite Derivatives for Next-Generation Ceramic Fuel Cells
用于下一代陶瓷燃料电池的六方钙钛矿衍生物
  • 批准号:
    EP/X010422/1
  • 财政年份:
    2023
  • 资助金额:
    $ 59.13万
  • 项目类别:
    Research Grant
Novel magnetic tunneling junction devices with layer number-controlled hexagonal boron nitride sheets
层数可控六方氮化硼片新型磁隧道结器件
  • 批准号:
    23K17863
  • 财政年份:
    2023
  • 资助金额:
    $ 59.13万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Hexagonal-boron nitride and ionic liquid doped hybrid adsorbent for heat transformation applications
用于热转换应用的六方氮化硼和离子液体掺杂混合吸附剂
  • 批准号:
    22KF0300
  • 财政年份:
    2023
  • 资助金额:
    $ 59.13万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Exploration for quntum functions of hexagonal Boron Nitride by their defect control
通过缺陷控制探索六方氮化硼的量子功能
  • 批准号:
    23H02052
  • 财政年份:
    2023
  • 资助金额:
    $ 59.13万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Investigating the spin & optical properties of atomic defects in hexagonal boron nitride.
研究旋转
  • 批准号:
    2885835
  • 财政年份:
    2023
  • 资助金额:
    $ 59.13万
  • 项目类别:
    Studentship
DMREF: Discovery, Development, Design and Additive Manufacturing of Multi-Principal-Element Hexagonal-Close-Packed Structural Alloys
DMREF:多主元六方密排结构合金的发现、开发、设计和增材制造
  • 批准号:
    2324022
  • 财政年份:
    2023
  • 资助金额:
    $ 59.13万
  • 项目类别:
    Standard Grant
Hexagonal Perovskite Derivatives for Next-Generation Ceramic Fuel Cells
用于下一代陶瓷燃料电池的六方钙钛矿衍生物
  • 批准号:
    EP/X011941/1
  • 财政年份:
    2023
  • 资助金额:
    $ 59.13万
  • 项目类别:
    Research Grant
Rational design and efficient synthesis of non-hexagonal nanocarbons
非六方纳米碳的合理设计与高效合成
  • 批准号:
    22KJ1526
  • 财政年份:
    2023
  • 资助金额:
    $ 59.13万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Establishment of 3D structure control methods of 2D hexagonal BN and thermal management of resin using them.
建立2D六方BN的3D结构控制方法以及利用该方法对树脂进行热管理。
  • 批准号:
    23H01710
  • 财政年份:
    2023
  • 资助金额:
    $ 59.13万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
I-Corps: Scalable Development of Multifunctional Hexagonal Boron Nitride Protective Coatings
I-Corps:多功能六方氮化硼防护涂层的可扩展开发
  • 批准号:
    2325675
  • 财政年份:
    2023
  • 资助金额:
    $ 59.13万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了