Recursion Theory and Its Applications
递归理论及其应用
基本信息
- 批准号:1458061
- 负责人:
- 金额:$ 5.52万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-08-01 至 2016-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In the proposed project, Cai plans to study classical recursion theory with emphasis on some interesting long-standing questions. In addition, he hopes to introduce new ideas and concepts to enrich the field, as well as to investigate some recent new results for different approaches and potential improvements. Cai also aims to expand the scope to applications of recursion theory, in particular he will continue the study of the degrees of provability, where proof-theoretic results can be proved using recursion-theoretic methods such as diagonalization and the recursion theorem.Recursion theory is a field of logic addressing effective content of mathematical practices (e.g., which of the mathematical procedures can be performed by automated machines, or computers). It has classical applications explaining why some mathematical problems (e.g., Hilbert's Tenth Problem) are theoretically unsolvable. The proposed project aims to improve the understanding of recursion theory by investigating old and new open problems, as well as to expand it by building connections to other fields such as proof theory. The proposed project has potential applications explaining how certain arithmetical facts could be theoretically unprovable.
在这个项目中,Cai计划研究经典递归理论,重点是一些有趣的长期存在的问题。此外,他希望引入新的想法和概念来丰富该领域,并调查最近的一些新结果,以获得不同的方法和潜在的改进。蔡还旨在扩大递归理论的应用范围,特别是他将继续研究可证明性的程度,其中证明理论的结果可以使用递归理论方法来证明,如对角化和递归定理。递归理论是一个逻辑领域,解决数学实践的有效内容(例如,这些数学过程中的哪一个可以由自动化机器或计算机执行)。它有经典的应用解释为什么一些数学问题(例如,希尔伯特第十问题(Hilbert's Tenth Problem)在理论上是无法解决的。该项目旨在通过调查新旧开放问题来提高对递归理论的理解,并通过与其他领域(如证明理论)建立联系来扩展递归理论。拟议的项目具有潜在的应用,可以解释某些算术事实如何在理论上无法证明。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rosa Orellana其他文献
The quasi-partition algebra
- DOI:
10.1016/j.jalgebra.2013.11.028 - 发表时间:
2014-02-15 - 期刊:
- 影响因子:
- 作者:
Zajj Daugherty;Rosa Orellana - 通讯作者:
Rosa Orellana
The lattice of submonoids of the uniform block permutations containing the symmetric group
- DOI:
10.1007/s00233-025-10505-6 - 发表时间:
2025-02-24 - 期刊:
- 影响因子:0.700
- 作者:
Rosa Orellana;Franco Saliola;Anne Schilling;Mike Zabrocki - 通讯作者:
Mike Zabrocki
Rosa Orellana的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Rosa Orellana', 18)}}的其他基金
Formal Power Series and Algebraic Combinatorics: an International Combinatorics Conference
形式幂级数和代数组合学:国际组合学会议
- 批准号:
0602970 - 财政年份:2006
- 资助金额:
$ 5.52万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于isomorph theory研究尘埃等离子体物理量的微观动力学机制
- 批准号:12247163
- 批准年份:2022
- 资助金额:18.00 万元
- 项目类别:专项项目
Toward a general theory of intermittent aeolian and fluvial nonsuspended sediment transport
- 批准号:
- 批准年份:2022
- 资助金额:55 万元
- 项目类别:
英文专著《FRACTIONAL INTEGRALS AND DERIVATIVES: Theory and Applications》的翻译
- 批准号:12126512
- 批准年份:2021
- 资助金额:12.0 万元
- 项目类别:数学天元基金项目
基于Restriction-Centered Theory的自然语言模糊语义理论研究及应用
- 批准号:61671064
- 批准年份:2016
- 资助金额:65.0 万元
- 项目类别:面上项目
相似海外基金
EAGER: IMPRESS-U: Random Matrix Theory and its Applications to Deep Learning
EAGER:IMPRESS-U:随机矩阵理论及其在深度学习中的应用
- 批准号:
2401227 - 财政年份:2024
- 资助金额:
$ 5.52万 - 项目类别:
Standard Grant
The theory of meaning via dependent type semantics and its automatic verification
基于依赖类型语义的意义理论及其自动验证
- 批准号:
23H03452 - 财政年份:2023
- 资助金额:
$ 5.52万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
The Possibility of Simmel's Theory of Sociability as a Form of Knowledge: Renewing the History of Sociology in the German-Speaking World and Interpreting its Contemporary Significance.
齐美尔的社交理论作为一种知识形式的可能性:更新德语世界的社会学史并解释其当代意义。
- 批准号:
23KJ1558 - 财政年份:2023
- 资助金额:
$ 5.52万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Coincident estimation of cell elasticity and intracellular pressure by atomic force measurement and its elastic shell theory analysis
原子力测量细胞弹性和细胞内压力的一致估计及其弹性壳理论分析
- 批准号:
23H01143 - 财政年份:2023
- 资助金额:
$ 5.52万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Quantification of brain state transition costs based on stochastic control theory and its application to cognitive neuroscience
基于随机控制理论的大脑状态转换成本量化及其在认知神经科学中的应用
- 批准号:
22KJ1172 - 财政年份:2023
- 资助金额:
$ 5.52万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Mean Field Game Theory and Its Application to Mathematical Finance
平均场博弈论及其在数学金融中的应用
- 批准号:
23KJ0648 - 财政年份:2023
- 资助金额:
$ 5.52万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Progress of Recursive Utility Maximization Theory and Its Applications
递归效用最大化理论及其应用进展
- 批准号:
23K01450 - 财政年份:2023
- 资助金额:
$ 5.52万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A formal group theory-based model in primates for studying interactive social behavior and its dysfunction
用于研究互动社会行为及其功能障碍的基于正式群体理论的灵长类动物模型
- 批准号:
10567456 - 财政年份:2023
- 资助金额:
$ 5.52万 - 项目类别:
Elucidation of a Novel Functional Mechanism of Intravenous Anesthetics Based on the Membrane Lipid Theory and Its Application to Clinical Practice
基于膜脂理论的静脉麻醉药新作用机制的阐明及其在临床实践中的应用
- 批准号:
23K06361 - 财政年份:2023
- 资助金额:
$ 5.52万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Non-perturbative methods to quantum field theory and its applications to superstring theory
量子场论的非微扰方法及其在超弦理论中的应用
- 批准号:
22KJ2096 - 财政年份:2023
- 资助金额:
$ 5.52万 - 项目类别:
Grant-in-Aid for JSPS Fellows