Combinatorial Representation Theory
组合表示理论
基本信息
- 批准号:2153998
- 负责人:
- 金额:$ 18.15万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-07-01 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Algebraic objects such as groups are used to measure symmetry in a similar way as numbers are used to measure size. In combinatorial representation theory we seek to make algebraic objects more accessible by relating abstract algebraic objects to combinatorial objects such as graphs and matrices. The combinatorial objects are often easier to understand and more importantly they lead to more efficient computation. In this proposal we are interested in using combinatorial objects to understand products of representations. One product investigated in this proposal is the tensor product of representations of symmetry groups. The goal is to devise an algorithm that uses combinatorial objects to understand the decomposition of this product into simpler representations. The decomposition of tensor products is an important problem that has applications to a plethora of fields such as algebraic combinatorics, complexity theory, and statistics, and has applications in medicine, computer vision, physics, chemistry, and fast matrix multiplication. Essentially, it is the problem of recovering individual signals from a mixture of signals. There are three longstanding unsolved problems in combinatorial representation theory that seek to decompose representations into irreducible representations. These include the Kronecker problem, the Plethysm problem and the Restriction problem. These problems are interrelated and making progress in the understanding of any will lead to breakthroughs on the others. Zabrocki and the PI introduced a new basis of symmetric functions that arose from connections to the partition algebra and led to the introduction of new combinatorial objects in the study of the Kronecker problem. This new basis of symmetric functions has provided a better understanding of the connection between the three open problems and the combinatorial objects introduced have made the problems more accessible. In this proposal the PI and collaborators, including graduate students, will continue to develop algorithms using diagram algebras and symmetric functions that we hope will lead to advances in the understanding of the Kronecker problem.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
代数对象(如组)用于测量对称性,就像数字用于测量大小一样。 在组合表示论中,我们试图通过将抽象代数对象与组合对象(如图和矩阵)联系起来,使代数对象更容易访问。 组合对象通常更容易理解,更重要的是,它们导致更有效的计算。 在这个提议中,我们感兴趣的是使用组合对象来理解表示的乘积。 在这个提议中研究的一个产品是对称群的表示的张量积。 我们的目标是设计一个算法,使用组合对象来理解这个产品分解成更简单的表示。 张量积的分解是一个重要的问题,在代数组合学、复杂性理论和统计学等众多领域都有应用,在医学、计算机视觉、物理、化学和快速矩阵乘法等领域也有应用。从本质上讲,这是从混合信号中恢复单个信号的问题。在组合表示论中有三个长期未解决的问题,即试图将表示分解为不可约表示。 这些问题包括Kronecker问题、Plethysm问题和限制问题。 这些问题是相互关联的,在任何一个问题上取得进展都会导致在其他问题上的突破。Zabrocki和PI介绍了一个新的基础上的对称函数所产生的连接到分区代数,并导致引进新的组合对象的研究克罗内克问题。 这一新的基础上的对称函数提供了一个更好的理解之间的连接的三个开放的问题和组合的对象介绍了问题更容易。 在这项提案中,PI和合作者,包括研究生,将继续开发使用图代数和对称函数的算法,我们希望这将导致对克罗内克问题的理解的进步。该奖项反映了NSF的法定使命,并已被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rosa Orellana其他文献
The quasi-partition algebra
- DOI:
10.1016/j.jalgebra.2013.11.028 - 发表时间:
2014-02-15 - 期刊:
- 影响因子:
- 作者:
Zajj Daugherty;Rosa Orellana - 通讯作者:
Rosa Orellana
The lattice of submonoids of the uniform block permutations containing the symmetric group
- DOI:
10.1007/s00233-025-10505-6 - 发表时间:
2025-02-24 - 期刊:
- 影响因子:0.700
- 作者:
Rosa Orellana;Franco Saliola;Anne Schilling;Mike Zabrocki - 通讯作者:
Mike Zabrocki
Rosa Orellana的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Rosa Orellana', 18)}}的其他基金
Formal Power Series and Algebraic Combinatorics: an International Combinatorics Conference
形式幂级数和代数组合学:国际组合学会议
- 批准号:
0602970 - 财政年份:2006
- 资助金额:
$ 18.15万 - 项目类别:
Standard Grant
相似海外基金
Combinatorial Representation Theory of Quantum Groups and Coinvariant Algebras
量子群与协变代数的组合表示论
- 批准号:
2348843 - 财政年份:2024
- 资助金额:
$ 18.15万 - 项目类别:
Standard Grant
Combinatorial structures appearing in representation theory of quantum symmetric subalgebras, and their applications
量子对称子代数表示论中出现的组合结构及其应用
- 批准号:
22KJ2603 - 财政年份:2023
- 资助金额:
$ 18.15万 - 项目类别:
Grant-in-Aid for JSPS Fellows
CAREER: Hessenberg Varieties, Symmetric Functions, and Combinatorial Representation Theory
职业:Hessenberg 簇、对称函数和组合表示论
- 批准号:
2237057 - 财政年份:2023
- 资助金额:
$ 18.15万 - 项目类别:
Continuing Grant
LEAPS-MPS: The representation theory of combinatorial categories
LEAPS-MPS:组合类别的表示理论
- 批准号:
2400460 - 财政年份:2023
- 资助金额:
$ 18.15万 - 项目类别:
Standard Grant
Analytic and combinatorial aspects of representation theory
表示论的分析和组合方面
- 批准号:
RGPIN-2018-04044 - 财政年份:2022
- 资助金额:
$ 18.15万 - 项目类别:
Discovery Grants Program - Individual
Combinatorial Representation Theory: Discovering the Interfaces of Algebra with Geometry and Topology
组合表示理论:发现代数与几何和拓扑的接口
- 批准号:
EP/W007509/1 - 财政年份:2022
- 资助金额:
$ 18.15万 - 项目类别:
Research Grant
LEAPS-MPS: The representation theory of combinatorial categories
LEAPS-MPS:组合类别的表示理论
- 批准号:
2137628 - 财政年份:2021
- 资助金额:
$ 18.15万 - 项目类别:
Standard Grant
Analytic and combinatorial aspects of representation theory
表示论的分析和组合方面
- 批准号:
RGPIN-2018-04044 - 财政年份:2021
- 资助金额:
$ 18.15万 - 项目类别:
Discovery Grants Program - Individual
Combinatorial Group Actions and Applications to Geometry, Knot Theory, and Representation Theory
组合群动作及其在几何、纽结理论和表示论中的应用
- 批准号:
2054513 - 财政年份:2021
- 资助金额:
$ 18.15万 - 项目类别:
Standard Grant