Combinatorial Representation Theory

组合表示理论

基本信息

  • 批准号:
    1700058
  • 负责人:
  • 金额:
    $ 11.38万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-07-01 至 2020-12-31
  • 项目状态:
    已结题

项目摘要

Algebraic objects are often perceived as complicated and mysterious. In combinatorial representation theory one seeks simpler ways to represent them in order to understand, organize and apply them to other subjects. This project deals with tensor products of representations, which is a way to combine representations. The main problem that the project seeks to understand is how to decompose tensor products into sums of simpler representations. One can think about it as the problem of recovering individual signals from a mixture of signals. The tensor product decomposition is a difficult problem but also very important, because it shows up in many fields, including algebraic combinatorics, complexity theory, and statistics, and has applications in medicine, computer vision, physics, chemistry, and fast matrix multiplication.A fundamental open problem in combinatorial representation theory is to describe in the decomposition of the tensor product the multiplicities of two irreducible representations of the symmetric group; these multiplicities are called Kronecker coefficients. The problem of finding a combinatorial interpretation for these coefficients has been labeled as one of the "main problems in combinatorial representation theory." The PI and collaborators have been able to connect the Kronecker coefficients to the partition algebra. This connection led to the discovery of the "universal characters" of the symmetric group, which are symmetric functions that specialize to characters of the symmetric group when evaluated at roots of unity. These symmetric functions connect several difficult problems in combinatorial representation theory and will lead to the resolution of several of these problems.
代数对象通常被认为是复杂和神秘的。在组合表示论中,人们寻求更简单的方法来表示它们,以便理解,组织和应用它们到其他学科。这个项目处理的是表示的张量积,这是一种联合收割机表示的方法。该项目试图理解的主要问题是如何将张量积分解为更简单的表示之和。人们可以把它看作是从混合信号中恢复单个信号的问题。张量积分解是一个难题,但也非常重要,因为它出现在许多领域,包括代数组合学,复杂性理论和统计学,并在医学,计算机视觉,物理,化学,组合表示论中的一个基本的开放问题是在张量积的分解中描述两个不可约表示的重数的对称群;这些多重性被称为克罗内克系数。为这些系数找到一个组合解释的问题已经被标记为组合表示论的主要问题之一。“PI和合作者已经能够将Kronecker系数与分区代数联系起来。这种联系导致了对称群的“通用特征”的发现,这些特征是在单位根处求值时专门针对对称群特征的对称函数。这些对称函数连接了组合表示论中的几个困难问题,并将导致其中几个问题的解决。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A minimaj-preserving crystal on ordered multiset partitions
  • DOI:
    10.1016/j.aam.2017.11.006
  • 发表时间:
    2017-07
  • 期刊:
  • 影响因子:
    0
  • 作者:
    G. Benkart;L. Colmenarejo;P. Harris;R. Orellana;G. Panova;A. Schilling;Martha Yip
  • 通讯作者:
    G. Benkart;L. Colmenarejo;P. Harris;R. Orellana;G. Panova;A. Schilling;Martha Yip
Products of symmetric group characters
  • DOI:
    10.1016/j.jcta.2019.02.019
  • 发表时间:
    2019-07
  • 期刊:
  • 影响因子:
    0
  • 作者:
    R. Orellana;M. Zabrocki
  • 通讯作者:
    R. Orellana;M. Zabrocki
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Rosa Orellana其他文献

The quasi-partition algebra
  • DOI:
    10.1016/j.jalgebra.2013.11.028
  • 发表时间:
    2014-02-15
  • 期刊:
  • 影响因子:
  • 作者:
    Zajj Daugherty;Rosa Orellana
  • 通讯作者:
    Rosa Orellana
The lattice of submonoids of the uniform block permutations containing the symmetric group
  • DOI:
    10.1007/s00233-025-10505-6
  • 发表时间:
    2025-02-24
  • 期刊:
  • 影响因子:
    0.700
  • 作者:
    Rosa Orellana;Franco Saliola;Anne Schilling;Mike Zabrocki
  • 通讯作者:
    Mike Zabrocki

Rosa Orellana的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Rosa Orellana', 18)}}的其他基金

Combinatorial Representation Theory
组合表示理论
  • 批准号:
    2153998
  • 财政年份:
    2022
  • 资助金额:
    $ 11.38万
  • 项目类别:
    Standard Grant
Recursion Theory and Its Applications
递归理论及其应用
  • 批准号:
    1458061
  • 财政年份:
    2014
  • 资助金额:
    $ 11.38万
  • 项目类别:
    Standard Grant
Combinatorial Representation Theory
组合表示理论
  • 批准号:
    1300512
  • 财政年份:
    2013
  • 资助金额:
    $ 11.38万
  • 项目类别:
    Standard Grant
Formal Power Series and Algebraic Combinatorics: an International Combinatorics Conference
形式幂级数和代数组合学:国际组合学会议
  • 批准号:
    0602970
  • 财政年份:
    2006
  • 资助金额:
    $ 11.38万
  • 项目类别:
    Standard Grant

相似海外基金

Combinatorial Representation Theory of Quantum Groups and Coinvariant Algebras
量子群与协变代数的组合表示论
  • 批准号:
    2348843
  • 财政年份:
    2024
  • 资助金额:
    $ 11.38万
  • 项目类别:
    Standard Grant
Combinatorial Representation Theory
组合表示理论
  • 批准号:
    2246846
  • 财政年份:
    2023
  • 资助金额:
    $ 11.38万
  • 项目类别:
    Standard Grant
Combinatorial structures appearing in representation theory of quantum symmetric subalgebras, and their applications
量子对称子代数表示论中出现的组合结构及其应用
  • 批准号:
    22KJ2603
  • 财政年份:
    2023
  • 资助金额:
    $ 11.38万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
CAREER: Hessenberg Varieties, Symmetric Functions, and Combinatorial Representation Theory
职业:Hessenberg 簇、对称函数和组合表示论
  • 批准号:
    2237057
  • 财政年份:
    2023
  • 资助金额:
    $ 11.38万
  • 项目类别:
    Continuing Grant
LEAPS-MPS: The representation theory of combinatorial categories
LEAPS-MPS:组合类别的表示理论
  • 批准号:
    2400460
  • 财政年份:
    2023
  • 资助金额:
    $ 11.38万
  • 项目类别:
    Standard Grant
Analytic and combinatorial aspects of representation theory
表示论的分析和组合方面
  • 批准号:
    RGPIN-2018-04044
  • 财政年份:
    2022
  • 资助金额:
    $ 11.38万
  • 项目类别:
    Discovery Grants Program - Individual
Combinatorial Representation Theory
组合表示理论
  • 批准号:
    2153998
  • 财政年份:
    2022
  • 资助金额:
    $ 11.38万
  • 项目类别:
    Standard Grant
Combinatorial Representation Theory: Discovering the Interfaces of Algebra with Geometry and Topology
组合表示理论:发现代数与几何和拓扑的接口
  • 批准号:
    EP/W007509/1
  • 财政年份:
    2022
  • 资助金额:
    $ 11.38万
  • 项目类别:
    Research Grant
LEAPS-MPS: The representation theory of combinatorial categories
LEAPS-MPS:组合类别的表示理论
  • 批准号:
    2137628
  • 财政年份:
    2021
  • 资助金额:
    $ 11.38万
  • 项目类别:
    Standard Grant
Analytic and combinatorial aspects of representation theory
表示论的分析和组合方面
  • 批准号:
    RGPIN-2018-04044
  • 财政年份:
    2021
  • 资助金额:
    $ 11.38万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了