Statistical Methods for Causal Inference in Geographic Regression Discontinuity Designs

地理回归不连续性设计中因果推断的统计方法

基本信息

  • 批准号:
    1461435
  • 负责人:
  • 金额:
    $ 33万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-04-15 至 2020-03-31
  • 项目状态:
    已结题

项目摘要

This research project will develop methods to improve understanding of estimates from geographically referenced observational studies. These methods will enable researchers to accurately assess uncertainty for this class of problems, thereby reducing the chance of over-confident or potentially misleading results being presented to the public. When one is faced with geographically referenced data, such as those collected by population registries or satellite imagery, attempts to infer causal relationships between treatments and outcomes often are thwarted by the complex underlying spatial structure. For example, one might wish to estimate the influence of flooding on anxiety by comparing units in the flood zone to units outside the flood zone. However, underlying, unmeasured, and geographically varying characteristics, such as socio-economic status, may confound this relationship. Common approaches to these problems often substantially underestimate uncertainty, have serious issues of bias, or rely on very strong modeling assumptions, potentially leading to erroneous conclusions and findings. This project will address these issues by developing methods that adequately characterize and model spatial variation in the context of causal inference. The researchers also will develop and release software for analysis, and they will host a workshop focusing on this topic. This research project bridges the fields of causality and spatial statistics and offers a unified framework for inferring causal relationships in spatially referenced data. The researchers will extend the regression discontinuity design framework, where units just above and below some cut-point that determines treatment are compared to infer a causal relationship. For example, one might compare those on either side of a high-water mark in a flood, with the assumption that due to their geographic proximity, such units, other than having experienced flooding, are similar. However, unlike classic regression discontinuity, here the boundary is a line rather than a point, which substantially complicates analysis. The project will create and evaluate flexible tools to handle these complications and demonstrate how to use these tools in real-world contexts. The project's most significant theoretical contribution will be to fit the slope of the response surface with respect to the boundary rather than the response surface itself, which allows for appropriate extrapolation. This enhancement, coupled with the flexible nature of fitting surfaces using spatial tools, will allow for the preservation of effective random assignment of units across a treatment boundary. It also will allow for causal inference with relatively few and weak modeling assumptions, something that is critical in an observational data context.
该研究项目将开发方法,以提高对地理参考观察研究估计值的理解。 这些方法将使研究人员能够准确地评估这类问题的不确定性,从而减少向公众展示过度自信或潜在误导性结果的机会。 当人们面对地理参考数据时,例如人口登记或卫星图像收集的数据,试图推断治疗和结果之间的因果关系往往会受到复杂的潜在空间结构的阻碍。 例如,人们可能希望通过比较洪水区和洪水区以外的单位来估计洪水对焦虑的影响。 然而,潜在的、不可测量的和地理上不同的特征,如社会经济地位,可能会混淆这种关系。 解决这些问题的常用方法往往大大低估了不确定性,存在严重的偏见问题,或者依赖于非常强的建模假设,可能导致错误的结论和发现。 该项目将通过开发在因果推理的背景下充分描述和模拟空间变化的方法来解决这些问题。 研究人员还将开发和发布用于分析的软件,并将举办一个专注于这一主题的研讨会。这个研究项目连接了因果关系和空间统计学领域,并提供了一个统一的框架来推断空间参考数据中的因果关系。 研究人员将扩展回归不连续性设计框架,其中将确定治疗的临界点以上和以下的单位进行比较,以推断因果关系。 例如,人们可能会比较洪水中高水位线两侧的那些单元,假设由于它们的地理位置接近,这些单元除了经历过洪水之外是相似的。 然而,与经典的回归不连续性不同,这里的边界是一条线而不是一个点,这大大复杂化了分析。 该项目将创建和评估灵活的工具来处理这些并发症,并演示如何在现实世界中使用这些工具。 该项目最重要的理论贡献将是拟合响应面相对于边界的斜率,而不是响应面本身,这允许适当的外推。 这种增强,再加上使用空间工具拟合表面的灵活性,将允许在治疗边界上保留有效的随机分配单元。 它还允许用相对较少和较弱的建模假设进行因果推理,这在观测数据背景下至关重要。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Luke Miratrix其他文献

Leveraging Population Outcomes to Improve the Generalization of Experimental Results
利用人口结果来提高实验结果的泛化能力
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Melody Huang;Naoki Egami;Erin Hartman;Luke Miratrix
  • 通讯作者:
    Luke Miratrix

Luke Miratrix的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

Computational Methods for Analyzing Toponome Data
  • 批准号:
    60601030
  • 批准年份:
    2006
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Statistical Methods for Causal Inference
因果推断的统计方法
  • 批准号:
    MC_UU_00032/2
  • 财政年份:
    2023
  • 资助金额:
    $ 33万
  • 项目类别:
    Intramural
Statistical methods to characterize causal mechanisms by which air pollution affects the recurrence of cardiovascular events
描述空气污染影响心血管事件复发因果机制的统计方法
  • 批准号:
    10660281
  • 财政年份:
    2023
  • 资助金额:
    $ 33万
  • 项目类别:
Novel statistical methods for transcriptomic imputation to enhance understanding of causal mechanisms underlying human diseases
转录组插补的新统计方法可增强对人类疾病因果机制的理解
  • 批准号:
    MR/V020749/1
  • 财政年份:
    2022
  • 资助金额:
    $ 33万
  • 项目类别:
    Research Grant
Improvement of ecological risk assessment methods for chemical substances by statistical causal inference
通过统计因果推断改进化学物质生态风险评估方法
  • 批准号:
    21J01394
  • 财政年份:
    2021
  • 资助金额:
    $ 33万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Statistical Methods for Improving Causal Analyses
改进因果分析的统计方法
  • 批准号:
    MC_UU_00011/3
  • 财政年份:
    2018
  • 资助金额:
    $ 33万
  • 项目类别:
    Intramural
EAPSI: Developing Statistical Methods for Removing Unwanted Variation with Negative Controls in Genetics and Causal Inference
EAPSI:开发统计方法,通过遗传学和因果推理中的负控制消除不需要的变异
  • 批准号:
    1713563
  • 财政年份:
    2017
  • 资助金额:
    $ 33万
  • 项目类别:
    Fellowship Award
Statistical Methods for Causal Inference in Observational Studies
观察研究中因果推断的统计方法
  • 批准号:
    8870561
  • 财政年份:
    2015
  • 资助金额:
    $ 33万
  • 项目类别:
Structural identification of trait associated chromosomal segments and of causal mutations for quantitative traits in pooled F2 crosses using next-generation sequencing technologies and innovative statistical methods
使用新一代测序技术和创新统计方法对 F2 杂交中的性状相关染色体片段和数量性状的因果突变进行结构鉴定
  • 批准号:
    261898836
  • 财政年份:
    2014
  • 资助金额:
    $ 33万
  • 项目类别:
    Research Grants
Development of Statistical Methods Based on the Causal Inferencein the Molecular Epidemiologic Studies
分子流行病学研究中基于因果推断的统计方法的发展
  • 批准号:
    19500240
  • 财政年份:
    2007
  • 资助金额:
    $ 33万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Utilisation of complex epidemiological studies & advanced statistical methods, to explore causal pathways to illness...
利用复杂的流行病学研究
  • 批准号:
    nhmrc : 283326
  • 财政年份:
    2004
  • 资助金额:
    $ 33万
  • 项目类别:
    Early Career Fellowships
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了