Collaborative Research: Novel Fractional Order Ground Motion Intensity Measures for High Confidence Risk Assessment of Distributed Infrastructures

合作研究:用于分布式基础设施高置信度风险评估的新型分数阶地震动强度测量

基本信息

  • 批准号:
    1462177
  • 负责人:
  • 金额:
    $ 22.18万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-08-01 至 2019-07-31
  • 项目状态:
    已结题

项目摘要

Seismic risk assessment frameworks support risk-informed decision making in planning strategies for disaster prevention and mitigation. Such frameworks rely on intensity measures (IMs) to represent the strength of earthquake events, and to predict the behavior of key infrastructure components and their cascading effects on network performance and socio-economic systems. However, the current practice of adopting hazard intensity measures based on integer order derivatives or integrals of the ground motion time history is not ideal to predict infrastructure performance, and may induce significant uncertainties in the final outcome of regional risk analyses. In order to release the limitation of discrete integer order differential operations for IM characterization, this research will use new classes of spatially correlated earthquake intensity measures for regional risk assessment of infrastructures termed "á-order IMs" based on concepts from fractional order calculus. The methodology and tools provide more accurate probabilistic predictions of the seismic response of structures and infrastructure components by significantly reducing uncertainties, thus increasing the confidence in seismic reliability and risk assessment of complex systems. This achievement will offer broad impacts to owners charged with managing risks to large distributed infrastructure systems, and the public at large who benefit from associated risk-informed decisions on mitigation and response strategies.The project will use derivation of novel fractional order ground motion responses to characterize earthquake intensity, including identification of computationally efficient algorithms to conduct the fractional order operations. The optimal demand model form and á-order for the IMs will be identified to enable probabilistic response prediction of a wide range of complex infrastructure constituents anticipated across a regional portfolio. The project will also develop correlated ground motion prediction equations (GMPEs) for the fractional order IMs and quantify the resulting reduced uncertainty in risk estimates (e.g. network performance, economic losses) for distributed infrastructure systems. The advancements offered by this research will afford more robust analytical methods for probabilistic characterization of earthquakes across a region, efficient modeling of the physical demand imparted on infrastructures, and increased confidence in resulting risk estimates. The overall uncertainty reduction can advance risk-informed decision making targeted at reducing human casualties, economic losses, and loss of function of infrastructure in seismic zones.
地震风险评估框架支持在规划防灾和减灾战略时作出风险知情的决策。这种框架依赖于强度测量(IM)来表示地震事件的强度,并预测关键基础设施组件的行为及其对网络性能和社会经济系统的级联效应。然而,目前的做法,采用灾害强度措施的基础上整数阶导数或积分的地面运动时程是不理想的预测基础设施的性能,并可能导致重大的不确定性,在最终结果的区域风险分析。为了克服离散整数阶微分运算对IM特性的限制,本研究将基于分数阶微积分的概念,采用新的空间相关地震烈度测度对基础设施进行区域风险评估,称为“α阶IM”。该方法和工具通过显著降低不确定性,提供了对结构和基础设施部件地震响应的更准确的概率预测,从而提高了对复杂系统的地震可靠性和风险评估的信心。这一成果将提供广泛的影响,业主负责管理风险的大型分布式基础设施系统,并在广大公众谁受益于相关的风险知情的决策缓解和响应strategies.The项目将使用推导新颖的分数阶地面运动响应来表征地震烈度,包括识别计算效率高的算法进行分数阶操作。将确定IM的最佳需求模型形式和α-顺序,以便能够对区域投资组合中预期的各种复杂基础设施组成部分进行概率响应预测。该项目还将为分数阶IM开发相关地面运动预测方程(GMPEs),并量化分布式基础设施系统风险估计(例如网络性能,经济损失)中的不确定性。这项研究所提供的进步将提供更强大的分析方法,用于对整个地区的地震进行概率表征,对基础设施的物理需求进行有效建模,并提高对由此产生的风险估计的信心。整体不确定性的降低可以促进风险知情决策,旨在减少人员伤亡,经济损失和地震区基础设施功能的损失。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jamie Padgett其他文献

Jamie Padgett的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jamie Padgett', 18)}}的其他基金

BRITE Fellow: A New Paradigm of Equitable and Smart Multi-Hazard Resilience Modeling (ENSURE)
BRITE 研究员:公平且智能的多灾种复原力建模新范式 (ENSURE)
  • 批准号:
    2227467
  • 财政年份:
    2023
  • 资助金额:
    $ 22.18万
  • 项目类别:
    Standard Grant
SCC-PG: Toward Smart Resilience: Smart Systems for Situational Awareness of Flood Impacts and Transportation Access (SSSAFT) in Communities
SCC-PG:迈向智能复原力:社区洪水影响态势感知和交通便利 (SSSAFT) 的智能系统
  • 批准号:
    1951821
  • 财政年份:
    2020
  • 资助金额:
    $ 22.18万
  • 项目类别:
    Standard Grant
Collaborative Research: Probabilistic Debris Modeling in Coastal Storm Events: A Case of Complex Coupling Between Human-Built-Natural Systems
合作研究:沿海风暴事件中的概率碎片建模:人造自然系统之间复杂耦合的案例
  • 批准号:
    2002522
  • 财政年份:
    2020
  • 资助金额:
    $ 22.18万
  • 项目类别:
    Standard Grant
RAPID/Collaborative Research: Multi-Hazard Damage to Puerto Rico's Civil Infrastructure - Investigation of the Interactions of 2017 Hurricane Maria and 2020 Earthquake Sequence
快速/协作研究:波多黎各民用基础设施遭受的多重灾害损害 - 调查 2017 年飓风玛丽亚和 2020 年地震序列的相互作用
  • 批准号:
    2022427
  • 财政年份:
    2020
  • 资助金额:
    $ 22.18万
  • 项目类别:
    Standard Grant
Collaborative Research: Numerical and Probabilistic Modeling of Aboveground Storage Tanks Subjected to Multi-Hazard Storm Events
合作研究:遭受多重灾害风暴事件的地上储罐的数值和概率建模
  • 批准号:
    1635784
  • 财政年份:
    2016
  • 资助金额:
    $ 22.18万
  • 项目类别:
    Standard Grant
Prioritizing and Selecting Bridge Management Actions for Heightened Truck Loads and Natural Hazards in Light of Funding Allocation Patterns
根据资金分配模式优先考虑和选择针对卡车负载增加和自然灾害的桥梁管理行动
  • 批准号:
    1234690
  • 财政年份:
    2012
  • 资助金额:
    $ 22.18万
  • 项目类别:
    Standard Grant
CAREER: A Risk-Based Model to Achieve Sustainable Solutions for Bridge Infrastructure Subjected to Multiple Threats
职业:基于风险的模型,为遭受多重威胁的桥梁基础设施实现可持续解决方案
  • 批准号:
    1055301
  • 财政年份:
    2011
  • 资助金额:
    $ 22.18万
  • 项目类别:
    Standard Grant
IT-Enabled Continuous Risk Assessment of Bridge Networks for Customized and Actionable Multi-Hazard Interventions
利用 IT 对桥梁网络进行持续风险评估,以进行定制且可操作的多灾种干预措施
  • 批准号:
    0928493
  • 财政年份:
    2009
  • 资助金额:
    $ 22.18万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

NSFGEO-NERC: Collaborative Research: Exploring AMOC controls on the North Atlantic carbon sink using novel inverse and data-constrained models (EXPLANATIONS)
NSFGEO-NERC:合作研究:使用新颖的逆向模型和数据约束模型探索 AMOC 对北大西洋碳汇的控制(解释)
  • 批准号:
    2347992
  • 财政年份:
    2024
  • 资助金额:
    $ 22.18万
  • 项目类别:
    Standard Grant
NSFGEO-NERC: Collaborative Research: Exploring AMOC controls on the North Atlantic carbon sink using novel inverse and data-constrained models (EXPLANATIONS)
NSFGEO-NERC:合作研究:使用新颖的逆向模型和数据约束模型探索 AMOC 对北大西洋碳汇的控制(解释)
  • 批准号:
    2347991
  • 财政年份:
    2024
  • 资助金额:
    $ 22.18万
  • 项目类别:
    Standard Grant
Collaborative Research: A Novel Laboratory Approach for Exploring Contact Ice Nucleation
合作研究:探索接触冰核的新实验室方法
  • 批准号:
    2346198
  • 财政年份:
    2024
  • 资助金额:
    $ 22.18万
  • 项目类别:
    Standard Grant
Collaborative Research: A Novel Laboratory Approach for Exploring Contact Ice Nucleation
合作研究:探索接触冰核的新实验室方法
  • 批准号:
    2346197
  • 财政年份:
    2024
  • 资助金额:
    $ 22.18万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF: Small: Versatile Data Synchronization: Novel Codes and Algorithms for Practical Applications
合作研究:CIF:小型:多功能数据同步:实际应用的新颖代码和算法
  • 批准号:
    2312872
  • 财政年份:
    2023
  • 资助金额:
    $ 22.18万
  • 项目类别:
    Standard Grant
Collaborative Research: Enhanced Photolysis and Advanced Oxidation Processes by Novel KrCl* (222 nm) Irradiation
合作研究:通过新型 KrCl* (222 nm) 辐照增强光解和高级氧化过程
  • 批准号:
    2310137
  • 财政年份:
    2023
  • 资助金额:
    $ 22.18万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Developing and Harnessing the Platform of Quasi-One-Dimensional Topological Materials for Novel Functionalities and Devices
合作研究:DMREF:开发和利用用于新功能和器件的准一维拓扑材料平台
  • 批准号:
    2324033
  • 财政年份:
    2023
  • 资助金额:
    $ 22.18万
  • 项目类别:
    Standard Grant
Collaborative Research: IHBEM: The fear of here: Integrating place-based travel behavior and detection into novel infectious disease models
合作研究:IHBEM:这里的恐惧:将基于地点的旅行行为和检测整合到新型传染病模型中
  • 批准号:
    2327797
  • 财政年份:
    2023
  • 资助金额:
    $ 22.18万
  • 项目类别:
    Continuing Grant
Collaborative Research: Applying a novel approach to link microbial growth efficiency, function and energy transfer in the ocean
合作研究:应用一种新方法将海洋中微生物的生长效率、功能和能量转移联系起来
  • 批准号:
    2219796
  • 财政年份:
    2023
  • 资助金额:
    $ 22.18万
  • 项目类别:
    Standard Grant
Collaborative Research: ATD: Fast Algorithms and Novel Continuous-depth Graph Neural Networks for Threat Detection
合作研究:ATD:用于威胁检测的快速算法和新颖的连续深度图神经网络
  • 批准号:
    2219956
  • 财政年份:
    2023
  • 资助金额:
    $ 22.18万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了