EAGER-DynamicData: Real-time Discovery and Timely Event Detection from Dynamic and Multi-Modal Data Streams

EAGER-DynamicData:动态和多模态数据流的实时发现和及时事件检测

基本信息

项目摘要

Emergency responders (police, fire, ambulance services) have more and more access to more and more data stream: sensor readings, security cameras, personal reports (via cellphone, texts, tweets), GPS data etc. The availability of these data streams presents enormous opportunities - but also poses fundamental challenges:* Data streams arrive from a wide variety of sources and contain many diverse features; this makes it difficult to extract information from the streams, and especially, to integrate information from different streams. * Knowledge learned from past events must be transferred to knowledge about present (and future) events. Because no two events are ever identical, the knowledge learned from past events must be transferred to knowledge about present events that are not identical but only "similar" - and in ways that may not be known in advance and so must be discovered. * Learning and detection - and the actions that follow learning and detection ? must take place in a timely fashion: it is of little use to learn how to respond to an emergency only long after the emergency has passed. To accomplish this, the proposed work relies on new methods to discover what is relevant both in each individual data stream and across data streams, and to learn and exploit the similarities between the past and the present. This work is transformative and success in this project has the potential to lead to enormously enhanced, even life-saving, responses to emergencies of many sorts. Existing approaches treat individual data streams by exploiting particular physical characteristics of the signal, and treat multiple data streams in an ad-hoc fashion. These approaches miss the fact that it is not the physical characteristics of the signal that are important but rather the (semantic) information in the signal, and that there are connections between the information in different data streams. This project transforms the problem of learning from multiple (multi-modal) data streams by focusing on the relevance of information in each data stream, across data streams, and through time. The relevant information will generally be different for different events and different purposes and will not be known in advance, so relevance must be learned. To do this, this project organizes the information available at each moment in time in terms of contexts which encode exogenous metadata (e.g., when, where and by whom data was gathered) and endogenous metadata (e.g., features and statistics extracted from the data). In general, there are an enormous number and variety of contexts, but the most relevant information is embedded in only a few contexts. Because these most relevant contexts will not generally be known in advance and will be different in different scenarios, this project will develop a new class of methods and algorithms to discover the relevant contexts from multiple dynamic, multi-modal and high-dimensional data streams, and to use what is discovered to learn, detect and respond in a timely fashion. Because no two events are exactly the same, this project will develop of a new class of methods and algorithms for the discovery of relevant semantic similarities and their application, making it possible to transfer knowledge learned from past events to knowledge about present events. This work requires the development of highly innovative methodology and techniques that go far beyond existing work (high risk) and are potentially transformative for a wide variety of applications ranging from event detection to actionable intelligence.
紧急救援人员(警察、消防、救护车服务)越来越多地访问越来越多的数据流:传感器读数、安全摄像头、个人报告这些数据流的可用性带来了巨大的机会-但也带来了根本性的挑战:* 数据流来自各种各样的来源,包含许多不同的特征;这使得难以从流中提取信息,尤其是难以整合来自不同流的信息。 * 从过去事件中学到的知识必须转化为关于现在(和未来)事件的知识。 因为没有两个事件是完全相同的,所以从过去的事件中学到的知识必须转化为关于当前事件的知识,这些知识不是完全相同的,而是“相似的”--而且是以事先可能不知道的方式,因此必须被发现。* 学习和检测-以及学习和检测之后的行动?必须以及时的方式进行:只有在紧急情况过去很久之后才学习如何对紧急情况作出反应是没有什么用处的。 为了实现这一目标,拟议的工作依赖于新的方法来发现每个数据流和跨数据流中的相关内容,并学习和利用过去和现在之间的相似性。 这项工作具有变革性,该项目的成功有可能极大地加强对各种紧急情况的反应,甚至拯救生命。现有方法通过利用信号的特定物理特性来处理各个数据流,并且以自组织方式处理多个数据流。 这些方法忽略了这样一个事实,即重要的不是信号的物理特性,而是信号中的(语义)信息,并且不同数据流中的信息之间存在联系。该项目通过关注每个数据流中,跨数据流和时间的信息相关性,转变了从多个(多模态)数据流中学习的问题。 对于不同的事件和不同的目的,相关的信息通常是不同的,并且不会提前知道,因此必须学习相关性。 为了做到这一点,该项目组织在编码外源元数据(例如,何时、何地以及由谁收集数据)和内源元数据(例如,从数据中提取的特征和统计数据)。一般来说,有大量和各种各样的上下文,但最相关的信息只嵌入在少数几个上下文中。由于这些最相关的上下文通常不会提前知道,并且在不同的场景中会有所不同,因此该项目将开发一类新的方法和算法,以从多个动态,多模态和高维数据流中发现相关上下文,并使用所发现的内容来及时学习,检测和响应。 由于没有两个事件是完全相同的,该项目将开发一种新的方法和算法,用于发现相关的语义相似性及其应用,从而可以将从过去事件中学到的知识转移到关于当前事件的知识。这项工作需要开发高度创新的方法和技术,这些方法和技术远远超出现有工作(高风险),并可能对从事件检测到可操作的智能等各种应用产生变革性影响。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mihaela van der Schaar其他文献

130 - Interpretable machine learning for soft tissue knee injury screening: relevance to post-traumatic osteoarthritis prevention.
130 - 用于膝关节软组织损伤筛查的可解释机器学习:对创伤后骨关节炎预防的意义
  • DOI:
    10.1016/j.joca.2025.02.135
  • 发表时间:
    2025-04-01
  • 期刊:
  • 影响因子:
    9.000
  • 作者:
    Simone Castagno;Thomas Molloy;Benjamin Gompels;Mark Birch;Mihaela van der Schaar;Andrew McCaskie;Stephen McDonnell
  • 通讯作者:
    Stephen McDonnell
Bridging the Worlds of Pharmacometrics and Machine Learning
  • DOI:
    10.1007/s40262-023-01310-x
  • 发表时间:
    2023-10-06
  • 期刊:
  • 影响因子:
    4.000
  • 作者:
    Kamilė Stankevičiūtė;Jean-Baptiste Woillard;Richard W. Peck;Pierre Marquet;Mihaela van der Schaar
  • 通讯作者:
    Mihaela van der Schaar
Efficient outcomes in repeated games with limited monitoring
  • DOI:
    10.1007/s00199-015-0893-8
  • 发表时间:
    2015-06-24
  • 期刊:
  • 影响因子:
    1.100
  • 作者:
    Mihaela van der Schaar;Yuanzhang Xiao;William Zame
  • 通讯作者:
    William Zame
LATE PCI IN STEMI: A COMPLEX INTERACTION BETWEEN DELAY AND AGE
  • DOI:
    10.1016/s0735-1097(18)30585-0
  • 发表时间:
    2018-03-10
  • 期刊:
  • 影响因子:
  • 作者:
    Raffaele Bugiardini;Edina Cenko;Jinsung Yoon;Beatrice Ricci;Davor Milicic;Sasko Kedev;Zorana Vasiljevic;Olivia Manfrini;Mihaela van der Schaar;Lina Badimon
  • 通讯作者:
    Lina Badimon
“DE NOVO” HEART FAILURE: A MECHANISM UNDERSCORING SEX DIFFERENCES IN OUTCOMES AFTER ST-SEGMENT ELEVATION MYOCARDIAL INFARCTION
  • DOI:
    10.1016/s0735-1097(19)30677-1
  • 发表时间:
    2019-03-12
  • 期刊:
  • 影响因子:
  • 作者:
    Edina Cenko;Mihaela van der Schaar;Jinsung Yoon;Olivia Manfrini;Zorana Vasiljevic;Sasko Kedev;Marija Vavlukis;Milika Asanin;Davor Milicic;Lina Badimon;Raffaele Bugiardini
  • 通讯作者:
    Raffaele Bugiardini

Mihaela van der Schaar的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mihaela van der Schaar', 18)}}的其他基金

CIF: Small: Networks: Evolution, Learning and Social Norms
CIF:小型:网络:进化、学习和社会规范
  • 批准号:
    1524417
  • 财政年份:
    2015
  • 资助金额:
    $ 26.68万
  • 项目类别:
    Standard Grant
Planning Grant: I/UCRC for Semantic Computing
规划资助:I/UCRC 用于语义计算
  • 批准号:
    1338935
  • 财政年份:
    2013
  • 资助金额:
    $ 26.68万
  • 项目类别:
    Standard Grant
CIF: Small: Intervention: A Design Framework for Resource Sharing and Exchanges Among Self-interested Users
CIF:小:干预:利己用户之间资源共享和交流的设计框架
  • 批准号:
    1218136
  • 财政年份:
    2012
  • 资助金额:
    $ 26.68万
  • 项目类别:
    Standard Grant
CSR: Small: Dynamic Construction and Configuration of Classifier Topologies for Real-time Stream Mining Systems
CSR:小型:实时流挖掘系统的分类器拓扑的动态构建和配置
  • 批准号:
    1016081
  • 财政年份:
    2010
  • 资助金额:
    $ 26.68万
  • 项目类别:
    Standard Grant
NEDG: A New Systematic Framework for Cross-layer Optimization
NEDG:跨层优化的新系统框架
  • 批准号:
    0831549
  • 财政年份:
    2008
  • 资助金额:
    $ 26.68万
  • 项目类别:
    Standard Grant
Knowledge and Strategic Learning in Multi-user Communications
多用户通信中的知识和策略学习
  • 批准号:
    0830556
  • 财政年份:
    2008
  • 资助金额:
    $ 26.68万
  • 项目类别:
    Standard Grant
Complexity Optimization Strategies for Adaptive Multimedia Receivers
自适应多媒体接收器的复杂度优化策略
  • 批准号:
    0541453
  • 财政年份:
    2006
  • 资助金额:
    $ 26.68万
  • 项目类别:
    Standard Grant
CSR--EHS: Dynamic Resource Management for Multimedia Applications on Embedded Systems
CSR--EHS:嵌入式系统多媒体应用的动态资源管理
  • 批准号:
    0509522
  • 财政年份:
    2005
  • 资助金额:
    $ 26.68万
  • 项目类别:
    Continuing Grant
CAREER: New Paradigm for Wireless Multimedia Communication Systems with Resource and Information Exchanges
职业:具有资源和信息交换的无线多媒体通信系统的新范式
  • 批准号:
    0448489
  • 财政年份:
    2005
  • 资助金额:
    $ 26.68万
  • 项目类别:
    Continuing Grant
CAREER: New Paradigm for Wireless Multimedia Communication Systems with Resource and Information Exchanges
职业:具有资源和信息交换的无线多媒体通信系统的新范式
  • 批准号:
    0541867
  • 财政年份:
    2005
  • 资助金额:
    $ 26.68万
  • 项目类别:
    Continuing Grant

相似海外基金

EAGER-DynamicData: Subspace Learning From Binary Sensing
EAGER-DynamicData:从二进制感知中学习子空间
  • 批准号:
    1833553
  • 财政年份:
    2018
  • 资助金额:
    $ 26.68万
  • 项目类别:
    Standard Grant
EAGER-DynamicData: Generative Statistical Modeling for Dynamic and Distributed Data
EAGER-DynamicData:动态和分布式数据的生成统计建模
  • 批准号:
    1462230
  • 财政年份:
    2015
  • 资助金额:
    $ 26.68万
  • 项目类别:
    Standard Grant
EAGER-DynamicData: Collaborative Research: Data-driven morphing of parsimonious models for the description of transient dynamics in complex systems
EAGER-DynamicData:协作研究:数据驱动的简约模型变形,用于描述复杂系统中的瞬态动力学
  • 批准号:
    1462254
  • 财政年份:
    2015
  • 资助金额:
    $ 26.68万
  • 项目类别:
    Standard Grant
EAGER-DynamicData: A Scalable Framework for Data-Driven Real-Time Event Detection in Power Systems
EAGER-DynamicData:电力系统中数据驱动的实时事件检测的可扩展框架
  • 批准号:
    1462311
  • 财政年份:
    2015
  • 资助金额:
    $ 26.68万
  • 项目类别:
    Standard Grant
EAGER-DynamicData: Reducing Orbital Position Uncertainty with Ensembles of Upper Atmospheric Models
EAGER-DynamicData:利用高层大气模型集合降低轨道位置不确定性
  • 批准号:
    1462363
  • 财政年份:
    2015
  • 资助金额:
    $ 26.68万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER-DynamicData: Machine Intelligence for Dynamic Data-Driven Morphing of Nodal Demand in Smart Energy Systems
合作研究:EAGER-DynamicData:智能能源系统中节点需求动态数据驱动变形的机器智能
  • 批准号:
    1462393
  • 财政年份:
    2015
  • 资助金额:
    $ 26.68万
  • 项目类别:
    Standard Grant
EAGER- DynamicData: Novel Approaches for Optimization, Control, and Learning in Distributed Networks
EAGER-DynamicData:分布式网络中优化、控制和学习的新方法
  • 批准号:
    1462397
  • 财政年份:
    2015
  • 资助金额:
    $ 26.68万
  • 项目类别:
    Standard Grant
EAGER-DynamicData: Collaborative: Exploiting the Dynamically Architectural Configurability for Compressed Sensing
EAGER-DynamicData:协作:利用压缩感知的动态架构可配置性
  • 批准号:
    1462473
  • 财政年份:
    2015
  • 资助金额:
    $ 26.68万
  • 项目类别:
    Standard Grant
EAGER-DynamicData: Collaborative Research: Data-driven morphing of parsimonious models for the description of transient dynamics in complex systems
EAGER-DynamicData:协作研究:数据驱动的简约模型变形,用于描述复杂系统中的瞬态动力学
  • 批准号:
    1462241
  • 财政年份:
    2015
  • 资助金额:
    $ 26.68万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER-DynamicData: Machine Intelligence for Dynamic Data-Driven Morphing of Nodal Demand in Smart Energy Systems
合作研究:EAGER-DynamicData:智能能源系统中节点需求动态数据驱动变形的机器智能
  • 批准号:
    1462404
  • 财政年份:
    2015
  • 资助金额:
    $ 26.68万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了