Knowledge and Strategic Learning in Multi-user Communications

多用户通信中的知识和策略学习

基本信息

项目摘要

Multi-user wireless communications systems form competitive environments, where heterogeneous and self-interested users compete for the limited spectrum resources. However, the techniques that have recently dominated multi-user communication research are not well suited for heterogeneous environments, because they usually assume transceivers that have similar standards and passively select their actions based on either complete or no knowledge about the competitors? protocols, utilities etc. Such passive system designs do not take advantage of the users? ?smartness? and may lead to inefficient spectrum usage. In contrast, this research characterizes and constructs multi-user communications systems, where users engage in proactive interactions for dividing the spectrum. A new multi-user communication paradigm is proposed, where the interaction between users and their resulting performance is driven not only by their ability to adapt their communication strategies, but also by their ability to make optimal decisions about information exchanges based on their knowledge about their competitors and the environment. The research has two main research thrusts. First, the investigators determine ?the value of knowledge?, which are the performance bounds that can be attained, when users and resource moderators with different amounts of knowledge about the entire communication system and the competing users interact. Moreover, how strategic users should proactively accumulate knowledge and improve their utility is also investigated. Second, the investigators construct operational algorithms that can approach these performance bounds, by systematically acquiring information about other users and deploying strategic learning solutions that enable them to forecast the other users? responses and, ultimately, to optimize their transmission actions. The ?values of learning?, which capture the performance gains for various strategic learning techniques requiring various information overheads and complexity costs, are also quantified.
多用户无线通信系统形成了竞争环境,其中异构和自私的用户竞争有限的频谱资源。然而,最近主导多用户通信研究的技术并不适合异构环境,因为它们通常假设收发器具有类似的标准,并根据对竞争对手的完整或不了解被动地选择它们的动作。协议,实用程序等。这样的被动系统设计不利用用户??聪明?并且可能导致低效的频谱使用。相比之下,本研究的特点,并构建多用户通信系统,其中用户进行积极的互动划分频谱。提出了一种新的多用户通信范式,用户之间的交互和他们所产生的性能不仅是由他们的能力,以适应他们的通信策略,但也由他们的能力,使最佳决策的信息交流的基础上,他们的知识,他们的竞争对手和环境。这项研究有两个主要的研究方向。首先,调查人员确定?知识的价值?这是当具有关于整个通信系统和竞争用户的不同知识量的用户和资源调节器交互时可以获得的性能界限。此外,战略用户应如何积极主动地积累知识,提高他们的效用也进行了研究。其次,调查人员构建的操作算法,可以接近这些性能界限,通过系统地获取有关其他用户的信息,并部署战略学习解决方案,使他们能够预测其他用户?响应,并最终优化其传输行为。的?学习的价值观?其捕获需要各种信息开销和复杂性成本的各种战略学习技术的性能增益,也被量化。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mihaela van der Schaar其他文献

130 - Interpretable machine learning for soft tissue knee injury screening: relevance to post-traumatic osteoarthritis prevention.
130 - 用于膝关节软组织损伤筛查的可解释机器学习:对创伤后骨关节炎预防的意义
  • DOI:
    10.1016/j.joca.2025.02.135
  • 发表时间:
    2025-04-01
  • 期刊:
  • 影响因子:
    9.000
  • 作者:
    Simone Castagno;Thomas Molloy;Benjamin Gompels;Mark Birch;Mihaela van der Schaar;Andrew McCaskie;Stephen McDonnell
  • 通讯作者:
    Stephen McDonnell
Bridging the Worlds of Pharmacometrics and Machine Learning
  • DOI:
    10.1007/s40262-023-01310-x
  • 发表时间:
    2023-10-06
  • 期刊:
  • 影响因子:
    4.000
  • 作者:
    Kamilė Stankevičiūtė;Jean-Baptiste Woillard;Richard W. Peck;Pierre Marquet;Mihaela van der Schaar
  • 通讯作者:
    Mihaela van der Schaar
Efficient outcomes in repeated games with limited monitoring
  • DOI:
    10.1007/s00199-015-0893-8
  • 发表时间:
    2015-06-24
  • 期刊:
  • 影响因子:
    1.100
  • 作者:
    Mihaela van der Schaar;Yuanzhang Xiao;William Zame
  • 通讯作者:
    William Zame
LATE PCI IN STEMI: A COMPLEX INTERACTION BETWEEN DELAY AND AGE
  • DOI:
    10.1016/s0735-1097(18)30585-0
  • 发表时间:
    2018-03-10
  • 期刊:
  • 影响因子:
  • 作者:
    Raffaele Bugiardini;Edina Cenko;Jinsung Yoon;Beatrice Ricci;Davor Milicic;Sasko Kedev;Zorana Vasiljevic;Olivia Manfrini;Mihaela van der Schaar;Lina Badimon
  • 通讯作者:
    Lina Badimon
“DE NOVO” HEART FAILURE: A MECHANISM UNDERSCORING SEX DIFFERENCES IN OUTCOMES AFTER ST-SEGMENT ELEVATION MYOCARDIAL INFARCTION
  • DOI:
    10.1016/s0735-1097(19)30677-1
  • 发表时间:
    2019-03-12
  • 期刊:
  • 影响因子:
  • 作者:
    Edina Cenko;Mihaela van der Schaar;Jinsung Yoon;Olivia Manfrini;Zorana Vasiljevic;Sasko Kedev;Marija Vavlukis;Milika Asanin;Davor Milicic;Lina Badimon;Raffaele Bugiardini
  • 通讯作者:
    Raffaele Bugiardini

Mihaela van der Schaar的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mihaela van der Schaar', 18)}}的其他基金

CIF: Small: Networks: Evolution, Learning and Social Norms
CIF:小型:网络:进化、学习和社会规范
  • 批准号:
    1524417
  • 财政年份:
    2015
  • 资助金额:
    $ 25.57万
  • 项目类别:
    Standard Grant
EAGER-DynamicData: Real-time Discovery and Timely Event Detection from Dynamic and Multi-Modal Data Streams
EAGER-DynamicData:动态和多模态数据流的实时发现和及时事件检测
  • 批准号:
    1462245
  • 财政年份:
    2015
  • 资助金额:
    $ 25.57万
  • 项目类别:
    Standard Grant
Planning Grant: I/UCRC for Semantic Computing
规划资助:I/UCRC 用于语义计算
  • 批准号:
    1338935
  • 财政年份:
    2013
  • 资助金额:
    $ 25.57万
  • 项目类别:
    Standard Grant
CIF: Small: Intervention: A Design Framework for Resource Sharing and Exchanges Among Self-interested Users
CIF:小:干预:利己用户之间资源共享和交流的设计框架
  • 批准号:
    1218136
  • 财政年份:
    2012
  • 资助金额:
    $ 25.57万
  • 项目类别:
    Standard Grant
CSR: Small: Dynamic Construction and Configuration of Classifier Topologies for Real-time Stream Mining Systems
CSR:小型:实时流挖掘系统的分类器拓扑的动态构建和配置
  • 批准号:
    1016081
  • 财政年份:
    2010
  • 资助金额:
    $ 25.57万
  • 项目类别:
    Standard Grant
NEDG: A New Systematic Framework for Cross-layer Optimization
NEDG:跨层优化的新系统框架
  • 批准号:
    0831549
  • 财政年份:
    2008
  • 资助金额:
    $ 25.57万
  • 项目类别:
    Standard Grant
Complexity Optimization Strategies for Adaptive Multimedia Receivers
自适应多媒体接收器的复杂度优化策略
  • 批准号:
    0541453
  • 财政年份:
    2006
  • 资助金额:
    $ 25.57万
  • 项目类别:
    Standard Grant
CSR--EHS: Dynamic Resource Management for Multimedia Applications on Embedded Systems
CSR--EHS:嵌入式系统多媒体应用的动态资源管理
  • 批准号:
    0509522
  • 财政年份:
    2005
  • 资助金额:
    $ 25.57万
  • 项目类别:
    Continuing Grant
CAREER: New Paradigm for Wireless Multimedia Communication Systems with Resource and Information Exchanges
职业:具有资源和信息交换的无线多媒体通信系统的新范式
  • 批准号:
    0448489
  • 财政年份:
    2005
  • 资助金额:
    $ 25.57万
  • 项目类别:
    Continuing Grant
CAREER: New Paradigm for Wireless Multimedia Communication Systems with Resource and Information Exchanges
职业:具有资源和信息交换的无线多媒体通信系统的新范式
  • 批准号:
    0541867
  • 财政年份:
    2005
  • 资助金额:
    $ 25.57万
  • 项目类别:
    Continuing Grant

相似海外基金

CAREER: Strategic Interactions, Learning, and Dynamics in Large-Scale Multi-Agent Systems: Achieving Tractability via Graph Limits
职业:大规模多智能体系统中的战略交互、学习和动态:通过图限制实现可处理性
  • 批准号:
    2340289
  • 财政年份:
    2024
  • 资助金额:
    $ 25.57万
  • 项目类别:
    Continuing Grant
Strategic Derring: Using Errors to Maximise Learning
战略上的大胆:利​​用错误来最大化学习
  • 批准号:
    2891128
  • 财政年份:
    2023
  • 资助金额:
    $ 25.57万
  • 项目类别:
    Studentship
STINMALE: Strategic Interactions with Machine-Learning Algorithms: The Role of Simple Beliefs
STINMALE:与机器学习算法的战略交互:简单信念的作用
  • 批准号:
    EP/Y033361/1
  • 财政年份:
    2023
  • 资助金额:
    $ 25.57万
  • 项目类别:
    Research Grant
Career: Learning for Strategic Interactions in Societal-Scale Cyber-Physical Systems
职业:学习社会规模网络物理系统中的战略交互
  • 批准号:
    2240110
  • 财政年份:
    2023
  • 资助金额:
    $ 25.57万
  • 项目类别:
    Continuing Grant
CAREER: Towards a theory of machine learning with strategic interactions
职业:走向具有战略互动的机器学习理论
  • 批准号:
    2145898
  • 财政年份:
    2022
  • 资助金额:
    $ 25.57万
  • 项目类别:
    Continuing Grant
Collaborative Research: RI: AF: Small: Long-Term Impact of Fair Machine Learning under Strategic Individual Behavior
合作研究:RI:AF:小:战略性个人行为下公平机器学习的长期影响
  • 批准号:
    2202699
  • 财政年份:
    2022
  • 资助金额:
    $ 25.57万
  • 项目类别:
    Standard Grant
CRII: III: Learning networks from strategic decisions: enabling network intervention and revealing social privacy risks without structural information
CRII:III:从战略决策中学习网络:在没有结构信息的情况下实现网络干预并揭示社会隐私风险
  • 批准号:
    2153468
  • 财政年份:
    2022
  • 资助金额:
    $ 25.57万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: AF: Small: Long-Term Impact of Fair Machine Learning under Strategic Individual Behavior
合作研究:RI:AF:小:战略性个人行为下公平机器学习的长期影响
  • 批准号:
    2202700
  • 财政年份:
    2022
  • 资助金额:
    $ 25.57万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: AF: Small: Long-Term Impact of Fair Machine Learning under Strategic Individual Behavior
合作研究:RI:AF:小:战略性个人行为下公平机器学习的长期影响
  • 批准号:
    2301599
  • 财政年份:
    2022
  • 资助金额:
    $ 25.57万
  • 项目类别:
    Standard Grant
How old knowledge begets new knowledge: strategic regulation of neocortical knowledge modules and learning-induced neocortical plasticity
旧知识如何产生新知识:新皮质知识模块的策略调节和学习诱导的新皮质可塑性
  • 批准号:
    RGPIN-2016-06721
  • 财政年份:
    2021
  • 资助金额:
    $ 25.57万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了