Collaborative Research: Accelerated Large-Scale Simulation Study of Atomic-Scale Wear Using Hyper-Quasicontinum

合作研究:使用超准连续加速原子尺度磨损的大规模模拟研究

基本信息

  • 批准号:
    1462807
  • 负责人:
  • 金额:
    $ 24.84万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-07-01 至 2020-06-30
  • 项目状态:
    已结题

项目摘要

This collaborative award supports research on the mechanics of wear mechanisms occurring at the atomic scale. A novel predictive computational approach, the hyper-quasicontinuum (hyper-qc) method, will be employed and advanced. This approach will enable the computational simulation of friction and wear at realistic sliding speeds with atomic resolution of critical events and spatial domains. The simulation results are expected to lead to new insights into the fundamentals of atomic-scale wear. Such knowledge is a prerequisite for predicting wear at macroscopic length scales. Hence the outcomes will provide valuable insight into the improved engineering of structures and materials with the aim of wear reduction. Wear of conventional mechanical parts has been conservatively estimated to cause a loss equivalent to approximately 1.5 percent of an industrialized nation's Gross Domestic Product. For the United States, this corresponds to about 250 billion dollars in 2013. The problems arising from wear are even more critical in the newly emerging field of nanotechnology. Wear significantly hampers the adoption of systems with moving parts. Thus, the outcomes would enable further advances in nanotechnology. All computer codes established as an outcome of this project will be made freely available to the research community via dedicated web portals (qcmethod.org and openkim.org). The collaborative project will provide training for graduate students. An outreach program for science and engineering education will be organized with local high schools in Cincinnati whose student populations are predominantly from underrepresented groups. The ultimate aim of this project is to develop a novel predictive model for nano-scale wear, which can be used to reduce wear at macroscopic length scales. The research approach is based on the use of the hyper-qc method. To enable the analysis of wear, methodological innovations to advance the hyper-qc method are necessary. These advances would enable the method to deal with multiple time-scales. A novel approach for coupling of atomistic and continuum regions accounting for heat transfer will also be established. The hyper-qc method will make it possible to consider key experiments on atomic-scale wear. Simulating will capture all relevant features of wear experiments with an atomic force microscope apparatus. Thereby, atomic resolution is retained in the contact region and sliding speeds comparable to actual experiments are considered. Wear simulations will consider various engineering materials of technological interest including silicon, silicon-oxides, and diamond-like carbons. From the hyper-qc simulations it will be possible to identify the atomic-scale mechanisms responsible for wear at the nano-scale and to study their dependence on important experimental conditions such as sliding velocity and temperature. Conflicts between simulation results and experimental data and observations will be used to improve existing models for nano-scale wear.
该合作奖支持在原子尺度上发生的磨损机制的力学研究。一种新的预测计算方法,超准连续体(超qc)方法,将采用和先进的。这种方法将使计算模拟的摩擦和磨损在现实的滑动速度与原子分辨率的关键事件和空间域。模拟结果预计将导致新的见解原子尺度磨损的基本原理。这些知识是预测宏观长度尺度磨损的先决条件。因此,这些结果将为以减少磨损为目的的结构和材料的改进工程提供有价值的见解。据保守估计,传统机械零件的磨损造成的损失相当于工业化国家国内生产总值的约1.5%。对美国来说,这相当于2013年的2500亿美元。在新兴的纳米技术领域,由磨损引起的问题甚至更为关键。磨损严重阻碍了采用具有移动部件的系统。因此,这些成果将推动纳米技术的进一步发展。作为这一项目成果而建立的所有计算机代码将通过专门的门户网站(qcmethod.org和openkim.org)免费提供给研究界。该合作项目将为研究生提供培训。将与辛辛那提当地的高中组织一个科学和工程教育的推广方案,这些高中的学生主要来自代表性不足的群体。该项目的最终目的是开发一种新的纳米级磨损预测模型,可用于减少宏观长度尺度的磨损。研究方法是基于超质量控制方法的使用。为了能够分析磨损,有必要进行方法创新,以推进超质量控制方法。这些进展将使该方法能够处理多个时间尺度。一个新的方法耦合的原子和连续区占传热也将建立。超qc方法将使考虑原子尺度磨损的关键实验成为可能。模拟将捕捉所有相关的原子力显微镜装置磨损实验的特点。因此,原子分辨率被保留在接触区域和滑动速度相媲美的实际实验被认为是。磨损模拟将考虑各种具有技术意义的工程材料,包括硅、硅氧化物和类金刚石碳。从超qc模拟中,将有可能识别出纳米尺度下导致磨损的原子尺度机制,并研究它们对重要实验条件(如滑动速度和温度)的依赖性。模拟结果与实验数据和观察结果之间的冲突将用于改进现有的纳米级磨损模型。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ellad Tadmor其他文献

Ellad Tadmor的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ellad Tadmor', 18)}}的其他基金

Workshop: Mid-scale RI-EW: Knowledgebase of Mesoscale Modeling and Experimentation (KnoMME); Minneapolis, Minnesota; Fall 2022 or Spring 2023
研讨会:中尺度 RI-EW:中尺度建模和实验知识库 (KnoMME);
  • 批准号:
    2231655
  • 财政年份:
    2022
  • 资助金额:
    $ 24.84万
  • 项目类别:
    Standard Grant
Data CI Pilot: CI-Based Collaborative Development of Data-Driven Interatomic Potentials for Predictive Molecular Simulations
数据 CI 试点:基于 CI 的数据驱动原子间势的协作开发,用于预测分子模拟
  • 批准号:
    2039575
  • 财政年份:
    2020
  • 资助金额:
    $ 24.84万
  • 项目类别:
    Standard Grant
Collaborative Research: Framework: Cyberloop for Accelerated Bionanomaterials Design
合作研究:框架:加速生物纳米材料设计的 Cyber​​loop
  • 批准号:
    1931304
  • 财政年份:
    2019
  • 资助金额:
    $ 24.84万
  • 项目类别:
    Standard Grant
Collaborative Research: Reliable Materials Simulation based on the Knowledgebase of Interatomic Models (KIM)
协作研究:基于原子间模型知识库(KIM)的可靠材料模拟
  • 批准号:
    1834251
  • 财政年份:
    2018
  • 资助金额:
    $ 24.84万
  • 项目类别:
    Continuing Grant
NSF/DMR-BSF: Bridging the gap between atomistic simulations and fracture mechanics
NSF/DMR-BSF:弥合原子模拟和断裂力学之间的差距
  • 批准号:
    1607670
  • 财政年份:
    2016
  • 资助金额:
    $ 24.84万
  • 项目类别:
    Continuing Grant
Support for Rise of Data in Materials Research Workshop; University of Maryland; June 29-30, 2015
支持材料研究研讨会中数据的兴起;
  • 批准号:
    1542923
  • 财政年份:
    2015
  • 资助金额:
    $ 24.84万
  • 项目类别:
    Standard Grant
Collaborative Research: CDS&E: Systematic Multiscale Modeling using the Knowledgebase of Interatomic Models (KIM)
合作研究:CDS
  • 批准号:
    1408211
  • 财政年份:
    2014
  • 资助金额:
    $ 24.84万
  • 项目类别:
    Continuing Grant
Collaborative Research:CDI-Type II: The Knowledge-Base of Interatomic Models (KIM)
合作研究:CDI-Type II:原子间模型知识库(KIM)
  • 批准号:
    0941493
  • 财政年份:
    2009
  • 资助金额:
    $ 24.84万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

DMREF/Collaborative Research: Accelerated Discovery of Sustainable Bioplastics: Automated, Tunable, Integrated Design, Processing and Modeling
DMREF/合作研究:加速可持续生物塑料的发现:自动化、可调、集成设计、加工和建模
  • 批准号:
    2323976
  • 财政年份:
    2023
  • 资助金额:
    $ 24.84万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Accelerated Design, Discovery, and Deployment of Electronic Phase Transitions (ADEPT)
合作研究:DMREF:电子相变的加速设计、发现和部署 (ADEPT)
  • 批准号:
    2324172
  • 财政年份:
    2023
  • 资助金额:
    $ 24.84万
  • 项目类别:
    Standard Grant
Collaborative Research: SHINE: Where Are Particles Accelerated in Coronal Jets?
合作研究:SHINE:日冕喷流中的粒子在哪里加速?
  • 批准号:
    2229336
  • 财政年份:
    2023
  • 资助金额:
    $ 24.84万
  • 项目类别:
    Standard Grant
Collaborative Research: Accelerated Development of New, Scalable pH Sensors for Global Ocean Observational Networks
合作研究:加速开发用于全球海洋观测网络的新型可扩展 pH 传感器
  • 批准号:
    2300400
  • 财政年份:
    2023
  • 资助金额:
    $ 24.84万
  • 项目类别:
    Continuing Grant
DMREF/Collaborative Research: Accelerated Discovery of Sustainable Bioplastics: Automated, Tunable, Integrated Design, Processing and Modeling
DMREF/合作研究:加速可持续生物塑料的发现:自动化、可调、集成设计、加工和建模
  • 批准号:
    2323977
  • 财政年份:
    2023
  • 资助金额:
    $ 24.84万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Accelerated Design, Discovery, and Deployment of Electronic Phase Transitions (ADEPT)
合作研究:DMREF:电子相变的加速设计、发现和部署 (ADEPT)
  • 批准号:
    2324174
  • 财政年份:
    2023
  • 资助金额:
    $ 24.84万
  • 项目类别:
    Standard Grant
Collaborative Research: SHINE: Where Are Particles Accelerated in Coronal Jets?
合作研究:SHINE:日冕喷流中的粒子在哪里加速?
  • 批准号:
    2229338
  • 财政年份:
    2023
  • 资助金额:
    $ 24.84万
  • 项目类别:
    Standard Grant
DMREF/Collaborative Research: Accelerated Discovery of Sustainable Bioplastics: Automated, Tunable, Integrated Design, Processing and Modeling
DMREF/合作研究:加速可持续生物塑料的发现:自动化、可调、集成设计、加工和建模
  • 批准号:
    2323979
  • 财政年份:
    2023
  • 资助金额:
    $ 24.84万
  • 项目类别:
    Standard Grant
Collaborative Research: Accelerated Development of New, Scalable pH Sensors for Global Ocean Observational Networks
合作研究:加速开发用于全球海洋观测网络的新型可扩展 pH 传感器
  • 批准号:
    2300399
  • 财政年份:
    2023
  • 资助金额:
    $ 24.84万
  • 项目类别:
    Continuing Grant
Collaborative Research: Accelerated Development of New, Scalable pH Sensors for Global Ocean Observational Networks
合作研究:加速开发用于全球海洋观测网络的新型可扩展 pH 传感器
  • 批准号:
    2300401
  • 财政年份:
    2023
  • 资助金额:
    $ 24.84万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了