Collaborative Research: Mechanics of Granular Acoustic Meta-materials with Engineered Particles and Packings

合作研究:带有工程颗粒和填料的粒状声学超材料的力学

基本信息

  • 批准号:
    1463455
  • 负责人:
  • 金额:
    $ 19.68万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-04-15 至 2020-03-31
  • 项目状态:
    已结题

项目摘要

Acoustic meta-materials are engineered materials enabling the control of sound waves. Granular acoustic meta-materials are constructs of particles in periodic and disordered arrangements. This project seeks a fundamental understanding of the acoustic and mechanical response of granular packings where the particles possess specific engineered properties. These materials exhibit a key acoustical property, that is acoustic band gaps. Band gaps prevent sound of certain frequencies to propagate. Meta-materials exhibiting acoustic band gaps have applications for vibration isolation, sound wave communication, acoustic super-lenses, acoustic diodes, and acoustic cloaking devices. This project will combine engineered particle shapes and materials with specially designed spatial arrangements of the particles to allow detailed control over the acoustic properties of the material. This project will involve several undergraduates in research each year through partnerships between the collaborating institutions, one of which is minority-serving. Outreach initiatives include an annual lecture series on granular media. Teaching modules for use by the International Centre for Theoretical Physics will be developed for teaching basic computational research skills to graduate students from developing countries. In granular media, the discrete nature of the material allows optimization on both the grain and network scales. Also, the speed of sound in granular materials depends on the confining pressure due to changes in the particle-particle contact area. The objective of this research is to gain understanding of the acoustic response of engineered granular meta-materials, and to exploit their unique features to tune the mechanical response. Variations of the confining pressure will be employed to actively control the acoustic properties of granular meta-materials. Novel direct visualization techniques and discrete element simulations of individual particle motions and forces will enable close feedback between the predicted and measured mechanical response. The team will use 3D printing and other fabrication techniques to engineer particles with varied elastic properties, surface treatments, and complex shapes. In both experiments and simulations, the team will construct disordered and crystalline granular packings in both two- and three-dimensions using direct assembly methods. The team will also explore the effects of boundary conditions on the internal stress networks of granular packings with the goal of tuning their acoustic properties. Realistic inter-particle force laws obtained from direct measurements will be implemented into discrete element simulations of the mechanical response and compared to the results from experiments. Attainment of these goals will provide unprecedented insight into the acoustic properties of granular meta-materials.
声学超材料是能够控制声波的工程材料。 颗粒状声学超材料是由周期性和无序排列的颗粒构成的。 该项目旨在从根本上了解颗粒填料的声学和机械响应,其中颗粒具有特定的工程特性。 这些材料表现出关键的声学特性,即声学带隙。带隙阻止某些频率的声音传播。 呈现声学带隙的超材料具有用于振动隔离、声波通信、声学超透镜、声学二极管和声学隐身装置的应用。 该项目将结合联合收割机工程颗粒形状和材料与特别设计的空间安排的颗粒,以允许详细控制材料的声学特性。该项目每年将通过合作机构之间的伙伴关系,让几名本科生参与研究,其中一个是为少数群体服务的。外联举措包括关于颗粒媒体的年度系列讲座。将开发供国际理论物理中心使用的教学单元,向发展中国家的研究生教授基本的计算研究技能。在颗粒介质中,材料的离散性质允许在颗粒和网络尺度上进行优化。此外,颗粒材料中的声速取决于由于颗粒-颗粒接触面积的变化而引起的围压。本研究的目的是了解工程颗粒超材料的声学响应,并利用其独特的功能来调整机械响应。 围压的变化将被用来主动控制粒状超材料的声学特性。新的直接可视化技术和离散元模拟的个别粒子的运动和力将使预测和测量的机械响应之间的密切反馈。 该团队将使用3D打印和其他制造技术来设计具有不同弹性特性、表面处理和复杂形状的颗粒。在实验和模拟中,该团队将使用直接组装方法在二维和三维中构建无序和结晶颗粒包装。该团队还将探索边界条件对颗粒填料内部应力网络的影响,目的是调整其声学特性。 从直接测量获得的现实的颗粒间力的法律将被实施到离散元模拟的机械响应,并从实验的结果进行比较。 这些目标的实现将为颗粒状超材料的声学特性提供前所未有的见解。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mark Shattuck其他文献

An Impossibility Theorem for Allocation Aggregation
  • DOI:
    10.1007/s10992-014-9315-9
  • 发表时间:
    2014-06-24
  • 期刊:
  • 影响因子:
    1.000
  • 作者:
    Carl Wagner;Mark Shattuck
  • 通讯作者:
    Mark Shattuck
Enumerating set partitions according to the number of descents of size d or more
根据大小为 d 或更多的下降次数枚举集合分区
Recurrence relations for patterns of type (2,1) in flattened permutations
扁平排列中类型 (2,1) 模式的递归关系
A $$q$$ -analog of the hyperharmonic numbers
  • DOI:
    10.1007/s13370-012-0106-6
  • 发表时间:
    2012-09-18
  • 期刊:
  • 影响因子:
    0.700
  • 作者:
    Toufik Mansour;Mark Shattuck
  • 通讯作者:
    Mark Shattuck
Counting subwords in flattened permutations
计算扁平排列中的子词
  • DOI:
    10.4310/joc.2013.v4.n3.a4
  • 发表时间:
    2013-07
  • 期刊:
  • 影响因子:
    0.3
  • 作者:
    Toufik Mansour;Mark Shattuck;David G.L. Wang
  • 通讯作者:
    David G.L. Wang

Mark Shattuck的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mark Shattuck', 18)}}的其他基金

Collaborative Research: Experimental and Computational Studies of Flow and Clogging of Deformable Particles under Confinement
合作研究:约束下可变形颗粒流动和堵塞的实验和计算研究
  • 批准号:
    2002797
  • 财政年份:
    2020
  • 资助金额:
    $ 19.68万
  • 项目类别:
    Standard Grant
Collaborative Research: Experiment, simulation, and theory of slowly driven granular materials --- from micro-state statistics to macroscopic properties
合作研究:缓慢驱动颗粒材料的实验、模拟和理论——从微观状态统计到宏观特性
  • 批准号:
    0968013
  • 财政年份:
    2010
  • 资助金额:
    $ 19.68万
  • 项目类别:
    Standard Grant
CAREER: Granular Media: Experimental Kinetic Theory
职业:颗粒介质:实验动力学理论
  • 批准号:
    0134837
  • 财政年份:
    2002
  • 资助金额:
    $ 19.68万
  • 项目类别:
    Continuing Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Mechanics of Optimal Biomimetic Torene Plates and Shells with Ultra-high Genus
合作研究:超高属度最优仿生Torene板壳力学
  • 批准号:
    2323415
  • 财政年份:
    2024
  • 资助金额:
    $ 19.68万
  • 项目类别:
    Standard Grant
Collaborative Research: Extreme Mechanics of the Human Brain via Integrated In Vivo and Ex Vivo Mechanical Experiments
合作研究:通过体内和离体综合力学实验研究人脑的极限力学
  • 批准号:
    2331294
  • 财政年份:
    2024
  • 资助金额:
    $ 19.68万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Closed-Loop Design of Polymers with Adaptive Networks for Extreme Mechanics
合作研究:DMREF:采用自适应网络进行极限力学的聚合物闭环设计
  • 批准号:
    2413579
  • 财政年份:
    2024
  • 资助金额:
    $ 19.68万
  • 项目类别:
    Standard Grant
Collaborative Research: Extreme Mechanics of the Human Brain via Integrated In Vivo and Ex Vivo Mechanical Experiments
合作研究:通过体内和离体综合力学实验研究人脑的极限力学
  • 批准号:
    2331295
  • 财政年份:
    2024
  • 资助金额:
    $ 19.68万
  • 项目类别:
    Standard Grant
Collaborative Research: The impact of instruction on student thinking about measurement in classical and quantum mechanics experiments
合作研究:教学对学生思考经典和量子力学实验中的测量的影响
  • 批准号:
    2336135
  • 财政年份:
    2024
  • 资助金额:
    $ 19.68万
  • 项目类别:
    Standard Grant
Collaborative Research: Extreme Mechanics of the Human Brain via Integrated In Vivo and Ex Vivo Mechanical Experiments
合作研究:通过体内和离体综合力学实验研究人脑的极限力学
  • 批准号:
    2331296
  • 财政年份:
    2024
  • 资助金额:
    $ 19.68万
  • 项目类别:
    Standard Grant
Collaborative Research: Mechanics of Optimal Biomimetic Torene Plates and Shells with Ultra-high Genus
合作研究:超高属度最优仿生Torene板壳力学
  • 批准号:
    2323414
  • 财政年份:
    2024
  • 资助金额:
    $ 19.68万
  • 项目类别:
    Standard Grant
Collaborative Research: The impact of instruction on student thinking about measurement in classical and quantum mechanics experiments
合作研究:教学对学生思考经典和量子力学实验中的测量的影响
  • 批准号:
    2336136
  • 财政年份:
    2024
  • 资助金额:
    $ 19.68万
  • 项目类别:
    Standard Grant
Collaborative Research: Multiscale Analysis and Simulation of Biofilm Mechanics
合作研究:生物膜力学的多尺度分析与模拟
  • 批准号:
    2313746
  • 财政年份:
    2023
  • 资助金额:
    $ 19.68万
  • 项目类别:
    Continuing Grant
Collaborative Research: DMREF: Closed-Loop Design of Polymers with Adaptive Networks for Extreme Mechanics
合作研究:DMREF:采用自适应网络进行极限力学的聚合物闭环设计
  • 批准号:
    2323727
  • 财政年份:
    2023
  • 资助金额:
    $ 19.68万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了