CRII: SCH: Modeling and Analysis of Genetic Regulatory Networks under Drug Perturbation
CRII:SCH:药物扰动下遗传调控网络的建模与分析
基本信息
- 批准号:1464387
- 负责人:
- 金额:$ 17.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-04-01 至 2021-03-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
CRII: Modeling and Analysis of Genetic Regulatory Networks under Drug PerturbationIn recent years, it has become increasingly clear that sophisticated computational methods and mathematical modeling will be needed to manage, interpret and understand the complexity of biological data. Considering drug discovery today is a complex, expensive, and time-consuming process with high attrition rate, a more systematic approach is needed to analyze the underlying genetic regulation in order to lead to more effective and efficient drug development. This project targets the dynamics of Genetic Regulatory Networks (GRNs) under drug perturbation using hybrid systems, in order to quantify drug effectiveness regarding different dosing regimens, optimal target(s), and combinational therapy. The interdisciplinary nature of this project promises to foster cross-fertilization of ideas between computational science and biomedical research. It is promising that such study would advance research in effective and affordable treatment of genetic diseases like cancer. Moreover, the project will take place at Prairie View A&M University, an HBCU, which historically has a strong national presence as a producer of African American engineers. Ample efforts will be carried out by the PI to involve students in research and encourage promising undergraduates to pursue graduate study. The proposed research and education activities will greatly improve African American involvement in the emerging field of computational biology.Molecularly targeted agents (MTAs) are increasingly used for the treatment of cancer in recent years to improve the efficacy and selectivity by interfering with specific targeted molecules needed for carcinogenesis and tumor growth. While the lack of specificity of the traditional cytotoxic drugs allowed a relatively straightforward approach in preclinical and clinical study, developing a paradigm to better analyze the efficacy of MTAs is substantially more complex. Moreover, complex diseases such as cancer involved the interaction of more complicated and dynamic biological systems. This proposed research investigates both deterministic and stochastic hybrid systems models to study dynamics of the underlying GRN under drug perturbations in order to provide systematic mathematical analysis for different drug perturbation scenarios. While the deterministic hybrid systems model integrates continuous and discrete dynamics of GRN, the stochastic hybrid systems model captures the inherent stochasticity in genetic regulations and uncertainties introduced by drug effects. A realistic drug pharmacology model is taken into account in the proposed model, including drug pharmacokinetics and pharmacodynamics information linked through a state-space approach. The objective is to understand how the GRN reacts when perturbed and provide suggestions for better therapeutic interventions.
CRII:药物扰动下遗传调控网络的建模和分析近年来,越来越明显的是,需要复杂的计算方法和数学模型来管理、解释和理解生物数据的复杂性。考虑到今天的药物开发是一个复杂、昂贵、耗时和高磨损率的过程,需要一种更系统的方法来分析潜在的基因调控,以导致更有效和高效的药物开发。该项目旨在利用混合系统研究药物扰动下遗传调控网络(GRN)的动态变化,以量化不同给药方案、最佳靶点(S)和联合治疗的药物有效性。这个项目的跨学科性质有望促进计算科学和生物医学研究之间的思想交流。这项研究有望推动癌症等遗传病的有效和负担得起的治疗方法的研究。此外,该项目将在HBCU下属的Prairie View A&Amp;M大学开展。作为非裔美国人工程师的培养基地,该校历来在全国拥有强大的影响力。国际学生联合会将尽最大努力让学生参与研究,并鼓励有前途的本科生攻读研究生课程。拟议的研究和教育活动将极大地促进非裔美国人参与新兴的计算生物学领域。近年来,分子靶向制剂(MTA)越来越多地用于癌症的治疗,通过干扰癌症发生和肿瘤生长所需的特定靶向分子来提高疗效和选择性。虽然传统细胞毒性药物缺乏特异性,使得在临床前和临床研究中可以采用相对简单的方法,但开发一种更好地分析MTA疗效的范例要复杂得多。此外,癌症等复杂疾病涉及更复杂和更动态的生物系统的相互作用。这项研究同时研究了确定性和随机混合系统模型,以研究药物扰动下潜在GRN的动力学,以便为不同的药物扰动情景提供系统的数学分析。确定性混杂系统模型融合了GRN的连续和离散动态,而随机混杂系统模型则捕捉到了遗传规律固有的随机性和药物效应带来的不确定性。该模型考虑了真实的药物药理学模型,通过状态空间方法将药物的药代动力学和药效学信息联系在一起。目的是了解GRN在受到干扰时的反应,并为更好的治疗干预提供建议。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xiangfang Li其他文献
Joint power control and maximally disjoint routing for reliable data delivery in multihop CDMA wireless ad hoc networks
联合功率控制和最大不相交路由,可在多跳 CDMA 无线自组织网络中实现可靠的数据传输
- DOI:
10.1109/wcnc.2006.1683481 - 发表时间:
2006 - 期刊:
- 影响因子:0
- 作者:
Lijun Qian;Ning Song;D. Vaman;Xiangfang Li;Z. Gajic - 通讯作者:
Z. Gajic
Unsupervised Ensemble Semantic Segmentation for Foreground-Background Separation on Satellite Image
用于卫星图像前景-背景分离的无监督集成语义分割
- DOI:
10.1109/icsc59802.2024.00040 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Jaelen Tarry;Xishuang Dong;Xiangfang Li;Lijun Qian;Leah Chance;Philip Morrone - 通讯作者:
Philip Morrone
A comprehensive review on the flow behaviour in shale gas reservoirs: Multi‐scale, multi‐phase, and multi‐physics
页岩气储层流动行为综合评述:多尺度、多相、多物理
- DOI:
10.1002/cjce.24439 - 发表时间:
2022-05 - 期刊:
- 影响因子:0
- 作者:
Dong Feng;Zhangxin Chen;Keliu Wu;Jing Li;Xiaohu Dong;Yan Peng;Xinfeng Jia;Xiangfang Li;Dinghan Wang - 通讯作者:
Dinghan Wang
A New Analytical Model for Liquid Loading in Shale Gas Reservoirs
页岩气藏液体负荷的新分析模型
- DOI:
10.15530/urtec-2014-1922861 - 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Juntai Shi;Xiangfang Li;Pu Yunchao;Wei Yu - 通讯作者:
Wei Yu
Eliminating harmonic noise in vibroseis data through sparsity promoted waveform modeling
- DOI:
https://doi.org/10.1190/geo2021-0448.1 - 发表时间:
2021 - 期刊:
- 影响因子:3.3
- 作者:
Dawei Liu;Xiangfang Li;Wei Wang;Xiaokai Wang;Zhensheng Shi;Wenchao Chen - 通讯作者:
Wenchao Chen
Xiangfang Li的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xiangfang Li', 18)}}的其他基金
Excellence in Research: Research Capacity and Partnerships Building in Next-Generation Communication Ecosystems with Vertical Intelligence
卓越的研究:利用垂直智能构建下一代通信生态系统的研究能力和合作伙伴关系
- 批准号:
2302469 - 财政年份:2023
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
Targeted Infusion Project: Infusing 5G and IoT Learning and Practice into Electrical and Computer Engineering Curriculum
有针对性的注入项目:将5G和物联网学习和实践融入电气和计算机工程课程
- 批准号:
2205891 - 财政年份:2022
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
相似国自然基金
基于生物类芬顿的LA/Sch@BB耦合系统去除水产养殖尾水中抗生素的效果与机制研究
- 批准号:42377063
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
具有低聚合收缩和生态防龋双功能的埃洛石纳米管@SCH-79797改性复合树脂的研究
- 批准号:82170950
- 批准年份:2021
- 资助金额:52 万元
- 项目类别:面上项目
一类稳态Schödinger-Poisson-Slater方程标准化解的研究
- 批准号:11501137
- 批准年份:2015
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
锥中修改的Poisson-Sch积分在无穷远点处的渐近行为及其应用
- 批准号:U1304102
- 批准年份:2013
- 资助金额:30.0 万元
- 项目类别:联合基金项目
酵母中Sch9蛋白激酶信号途径调控衰老的分子机理
- 批准号:30671181
- 批准年份:2006
- 资助金额:24.0 万元
- 项目类别:面上项目
相似海外基金
CRII: SCH: Towards Smart Patient Flow Management: Real-time Inpatient Length of Stay Modeling and Prediction
CRII:SCH:迈向智能患者流程管理:实时住院患者住院时间建模和预测
- 批准号:
2246158 - 财政年份:2023
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
SCH: Statistical Foundation and Predictive Modeling for Personalized Diabetes Management: Continuous Glucose Monitoring (CGM), Electronic Health Records (EHR), and Biobanks
SCH:个性化糖尿病管理的统计基础和预测模型:连续血糖监测 (CGM)、电子健康记录 (EHR) 和生物样本库
- 批准号:
2205441 - 财政年份:2022
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
SCH: Screening and confirmatory machine learning for explainable modeling of non-cancer deaths in cancer patients
SCH:筛选和验证机器学习,用于癌症患者非癌症死亡的可解释模型
- 批准号:
10596376 - 财政年份:2022
- 资助金额:
$ 17.5万 - 项目类别:
SCH: Detecting and mapping stress patterns across space and time: Multimodal modeling of individuals in real-world physical and social work environments
SCH:检测和映射跨空间和时间的压力模式:现实世界物理和社会工作环境中个体的多模态建模
- 批准号:
2204942 - 财政年份:2022
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
SCH: Model-informed patient-specific rehabilitation using robotics and neuromuscular modeling
SCH:使用机器人技术和神经肌肉建模进行基于模型的患者特定康复
- 批准号:
10708142 - 财政年份:2022
- 资助金额:
$ 17.5万 - 项目类别:
SCH: Screening and confirmatory machine learning for explainable modeling of non-cancer deaths in cancer patients
SCH:筛选和验证机器学习,用于癌症患者非癌症死亡的可解释模型
- 批准号:
10689198 - 财政年份:2022
- 资助金额:
$ 17.5万 - 项目类别:
SCH: Model-informed patient-specific rehabilitation using robotics and neuromuscular modeling
SCH:使用机器人技术和神经肌肉建模进行基于模型的患者特定康复
- 批准号:
10601240 - 财政年份:2022
- 资助金额:
$ 17.5万 - 项目类别:
SCH: INT: Simulation and Decision-Analysis Algorithms for Integrated Modeling of Diseases: A healthy lives for all approach
SCH:INT:疾病综合建模的模拟和决策分析算法:所有人的健康生活方法
- 批准号:
1915481 - 财政年份:2020
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
SCH:INT: SCH: INT: A gamified mobile system for real-time mental health data modeling and personalized autism care across sociocultural settings
SCH:INT: SCH:INT:一个游戏化的移动系统,用于跨社会文化环境的实时心理健康数据建模和个性化自闭症护理
- 批准号:
2014232 - 财政年份:2020
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
SCH: INT: Surveillance and Control of Mosquito-Borne Diseases through Automated Species Identification and Spatiotemporal Modeling
SCH:INT:通过自动物种识别和时空建模监测和控制蚊媒疾病
- 批准号:
2014547 - 财政年份:2020
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant