Decouplings and applications

解耦和应用

基本信息

  • 批准号:
    1500461
  • 负责人:
  • 金额:
    $ 21.38万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-07-01 至 2019-06-30
  • 项目状态:
    已结题

项目摘要

The principal investigator, in collaboration with Jean Bourgain, has recently created a new set of tools that can successfully address a wide range of problems in the fields of number theory and partial differential equations. Until recently, many of these problems seemed unrelated. In light of his work with Bourgain, these problems are now understood as part of a more general theory that the two call "decoupling." The methods pertain to the field of modern harmonic analysis, a natural framework that allows for the formulation of a general enough theory. This project seeks to enlarge the range of applicability of decouplings, with some high-value targets in sight. A surprising feature of the research is that it removes certain restrictions on frequencies that were thought to be necessary in earlier work. In particular, the old requirement that frequencies have integer coordinates is replaced with the weaker assumption that sufficient spatial separation exists between frequencies. It is expected that the tools that will be developed will be accessible and useful to a large part of the mathematical community.Decouplings are certain generalizations of the Littlewood--Paley theory in the presence of curvature. The principal investigator's progress in pursuing the line of research related to this subject has relied hitherto on the interplay between multilinear and linear multiscale analysis. He has successfully addressed the case when the relevant manifold is a hypersurface with nonzero Gaussian curvature. He now proposes to develop the optimal decoupling theory for nondegenerate curves. Such a theory has the potential to achieve almost unprecedented applications of harmonic analysis to number theory. One notable example is the resolution of Vinogradov's mean value theorem. There is an interesting related circle of problems for the cone. The fact that it has zero Gaussian curvature poses a new level of difficulty that will most certainly require new ideas. Understanding the cone is part of a more ambitious project that will aim at understanding the decoupling theory for real analytic surfaces. There are further important related questions that remain to be explored, in connection with various restriction theorems and the Kakeya conjectures.
首席研究员,与Jean Bourgain合作,最近创造了一套新的工具,可以成功地解决数论和偏微分方程领域的广泛问题。直到最近,这些问题中的许多似乎都是不相关的。根据他与布尔甘的合作,这些问题现在被理解为一个更普遍的理论的一部分,两人称之为“脱钩”。这些方法属于现代谐波分析领域,这是一个自然的框架,允许形成一个足够普遍的理论。该项目旨在扩大解耦的适用范围,并着眼于一些高价值的目标。这项研究的一个令人惊讶的特点是,它消除了对频率的某些限制,而这些限制在早期的研究中被认为是必要的。特别是,频率具有整数坐标的旧要求被替换为频率之间存在足够空间间隔的较弱假设。预计将开发的工具将对数学界的大部分人可用和有用。解耦是Littlewood—Paley理论在曲率存在下的推广。迄今为止,首席研究员在追求与该主题相关的研究方向方面的进展一直依赖于多线性和线性多尺度分析之间的相互作用。他成功地解决了相关流形是非零高斯曲率的超曲面的情况。他现在提出发展非退化曲线的最优解耦理论。这种理论有可能实现调和分析在数论中的几乎前所未有的应用。一个值得注意的例子是维诺格拉多夫中值定理的解决。对于锥有一个有趣的相关问题。高斯曲率为零的事实提出了一个新的难度,这肯定需要新的想法。理解圆锥体是一个更宏大的项目的一部分,该项目旨在理解真实解析曲面的解耦理论。关于各种限制定理和Kakeya猜想,还有一些重要的相关问题有待探索。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ciprian Demeter其他文献

Modulation invariant bilinear T(1) theorem
  • DOI:
    10.1007/s11854-009-0034-z
  • 发表时间:
    2010-01-19
  • 期刊:
  • 影响因子:
    0.900
  • 作者:
    Árpád Bényi;Ciprian Demeter;Andrea R. Nahmod;Christoph M. Thiele;Rodolfo H. Torres;Paco Villarroya
  • 通讯作者:
    Paco Villarroya
Endpoint Bounds for the Quartile Operator
Bilinear Fourier Restriction Theorems
Level set estimates for the periodic Schrödinger maximal function on math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.svg" class="math"msupmrowmi mathvariant="double-struck"T/mi/mrowmrowmn1/mn/mrow/msup/math
关于数学中周期薛定谔极大函数的水平集估计 xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.svg" class="math" msup mrow mi mathvariant="double-struck" T/mi mrow mrow mn1/mn mrow/msup/math
  • DOI:
    10.1016/j.aim.2025.110186
  • 发表时间:
    2025-05-01
  • 期刊:
  • 影响因子:
    1.500
  • 作者:
    Ciprian Demeter
  • 通讯作者:
    Ciprian Demeter

Ciprian Demeter的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ciprian Demeter', 18)}}的其他基金

Spatial restriction of exponential sums to thin sets and beyond
指数和对稀疏集及以上的空间限制
  • 批准号:
    2349828
  • 财政年份:
    2024
  • 资助金额:
    $ 21.38万
  • 项目类别:
    Standard Grant
Small Cap and Large Cap Decoupling
小盘股和大盘股脱钩
  • 批准号:
    2055156
  • 财政年份:
    2021
  • 资助金额:
    $ 21.38万
  • 项目类别:
    Standard Grant
Collaborative Research: New Decouplings and Applications
合作研究:新的解耦和应用
  • 批准号:
    1800305
  • 财政年份:
    2018
  • 资助金额:
    $ 21.38万
  • 项目类别:
    Continuing Grant
Problems in Time Frequency Analysis
时频分析中的问题
  • 批准号:
    1161752
  • 财政年份:
    2012
  • 资助金额:
    $ 21.38万
  • 项目类别:
    Continuing Grant
Multilinearity in one and two dimensions
一维和二维的多重线性
  • 批准号:
    0901208
  • 财政年份:
    2009
  • 资助金额:
    $ 21.38万
  • 项目类别:
    Standard Grant
Multilinear Operators in Harmonic Analysis and Ergodic Theory
调和分析和遍历理论中的多线性算子
  • 批准号:
    0742740
  • 财政年份:
    2007
  • 资助金额:
    $ 21.38万
  • 项目类别:
    Standard Grant
Multilinear Operators in Harmonic Analysis and Ergodic Theory
调和分析和遍历理论中的多线性算子
  • 批准号:
    0556389
  • 财政年份:
    2006
  • 资助金额:
    $ 21.38万
  • 项目类别:
    Standard Grant

相似国自然基金

Applications of AI in Market Design
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国青年学者研 究基金项目
英文专著《FRACTIONAL INTEGRALS AND DERIVATIVES: Theory and Applications》的翻译
  • 批准号:
    12126512
  • 批准年份:
    2021
  • 资助金额:
    12.0 万元
  • 项目类别:
    数学天元基金项目

相似海外基金

Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
  • 批准号:
    2879438
  • 财政年份:
    2027
  • 资助金额:
    $ 21.38万
  • 项目类别:
    Studentship
Microbiome applications and technological hubs as solutions to minimize food loss and waste - FOODGUARD
微生物组应用和技术中心作为减少粮食损失和浪费的解决方案 - FOODGUARD
  • 批准号:
    10094820
  • 财政年份:
    2024
  • 资助金额:
    $ 21.38万
  • 项目类别:
    EU-Funded
Project GANESHA - Getting power Access to rural-Nepal through thermally cooled battery Energy storage for transport and Home Applications
GANESHA 项目 - 通过热冷却电池为尼泊尔农村地区提供电力 用于运输和家庭应用的储能
  • 批准号:
    10085992
  • 财政年份:
    2024
  • 资助金额:
    $ 21.38万
  • 项目类别:
    Collaborative R&D
Biophilica - Analysis of bio-coatings as an alternative to PU-coatings for advanced product applications
Biophilica - 分析生物涂层作为先进产品应用的 PU 涂层的替代品
  • 批准号:
    10089592
  • 财政年份:
    2024
  • 资助金额:
    $ 21.38万
  • 项目类别:
    Collaborative R&D
Novel Ceramic Coatings for High Temperature Applications
适用于高温应用的新型陶瓷涂层
  • 批准号:
    2905977
  • 财政年份:
    2024
  • 资助金额:
    $ 21.38万
  • 项目类别:
    Studentship
New low-cost graphene production to revolutionise engineering applications
新型低成本石墨烯生产将彻底改变工程应用
  • 批准号:
    2911021
  • 财政年份:
    2024
  • 资助金额:
    $ 21.38万
  • 项目类别:
    Studentship
Computational Tropical Geometry and its Applications
计算热带几何及其应用
  • 批准号:
    MR/Y003888/1
  • 财政年份:
    2024
  • 资助金额:
    $ 21.38万
  • 项目类别:
    Fellowship
IUCRC Phase III University of Colorado Boulder: Center for Membrane Applications, Science and Technology (MAST)
IUCRC 第三阶段科罗拉多大学博尔德分校:膜应用、科学与技术中心 (MAST)
  • 批准号:
    2310937
  • 财政年份:
    2024
  • 资助金额:
    $ 21.38万
  • 项目类别:
    Continuing Grant
CAREER: Verifying Security and Privacy of Distributed Applications
职业:验证分布式应用程序的安全性和隐私
  • 批准号:
    2338317
  • 财政年份:
    2024
  • 资助金额:
    $ 21.38万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 21.38万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了