Multilinear Operators in Harmonic Analysis and Ergodic Theory

调和分析和遍历理论中的多线性算子

基本信息

  • 批准号:
    0742740
  • 负责人:
  • 金额:
    $ 5.87万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2007
  • 资助国家:
    美国
  • 起止时间:
    2007-07-01 至 2010-06-30
  • 项目状态:
    已结题

项目摘要

ABSTRACTThis proposal describes research plans that are aimed at answering an array of questions in ergodic theory and harmonic analysis that are of great interest in modern analysis. The main common feature of all these problems resides in their multi-linear nature. Of particularInterest, when dealing with a multi-linear operator acting on some product of Lebesgue spaces, is to understand the range of indices for which it is well behaved. In this proposal the focus is mainly on almost everywhere convergence, and thus inherently on the boundedness of the associatedmaximal operators. An important instance of multi-linearity is represented by the combinatorial averages such as Furstenberg's nonstandard averages and the averages on cubes. The convergence of such averages has deep implications for various Ramsey-type problems on integers and even on general abstract groups. A second type of multi-linear operators we plan to investigate is represented by the weighted averages and series, such as the ones appearing in the so-called ``return times theorems''. The analysis of these objects reveals striking connections between dynamics and time-frequency analysis, in particular between Birghoff's point-wise ergodic theorem and Carleson's result on the point-wise convergence of Fourier series. This proposed research is at the cutting edge of what is now being done in dynamical systems, harmonic analysis and arithmetic combinatorics. It is expected that the resolution of the questions advanced in this proposal will further the mathematical community's understanding of the connections between these areas, in particular between processes in harmonic analysis and their analogue in ergodic theory. The nature of this research makes it also likely for our investigation to shed yet more light on some of the tools that are used in other areas of science, such as signal processing. The research project that is proposed in this grant will lead to interactions between the PI and mathematicians from other universities with whom part of the investigation might be conducted.
摘要该建议描述了研究计划,旨在回答一系列问题,遍历理论和谐波分析是非常感兴趣的现代分析。 所有这些问题的主要共同特点在于其多线性。特别有趣的是,当处理作用于勒贝格空间的某些乘积的多线性算子时,要理解它表现良好的指数范围。在这个建议的重点主要是几乎处处收敛,从而内在的associatedmaximum运营商的有界性。多重线性的一个重要例子是组合平均数,如Furstenberg的非标准平均数和立方体上的平均数。这种平均值的收敛性对整数甚至一般抽象群上的各种拉姆齐型问题都有深刻的影响。我们计划研究的第二种类型的多线性算子由加权平均和级数表示,例如出现在所谓的“返回时间定理”中的算子。对这些物体的分析揭示了动力学和时频分析之间的惊人联系,特别是Birghoff的逐点遍历定理和Carleson的Fourier级数的逐点收敛结果之间的联系。 这项研究是目前在动力系统,谐波分析和算术组合学正在做的最前沿。预计,在这个建议中提出的问题的解决将进一步数学界的理解这些领域之间的联系,特别是在调和分析和它们的类似物遍历理论的过程之间。这项研究的性质也使我们的调查有可能为其他科学领域(如信号处理)中使用的一些工具提供更多的信息。这项拨款中提出的研究项目将导致PI和其他大学的数学家之间的互动,其中部分调查可能会进行。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ciprian Demeter其他文献

Modulation invariant bilinear T(1) theorem
  • DOI:
    10.1007/s11854-009-0034-z
  • 发表时间:
    2010-01-19
  • 期刊:
  • 影响因子:
    0.900
  • 作者:
    Árpád Bényi;Ciprian Demeter;Andrea R. Nahmod;Christoph M. Thiele;Rodolfo H. Torres;Paco Villarroya
  • 通讯作者:
    Paco Villarroya
Endpoint Bounds for the Quartile Operator
Bilinear Fourier Restriction Theorems
Level set estimates for the periodic Schrödinger maximal function on math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.svg" class="math"msupmrowmi mathvariant="double-struck"T/mi/mrowmrowmn1/mn/mrow/msup/math
关于数学中周期薛定谔极大函数的水平集估计 xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.svg" class="math" msup mrow mi mathvariant="double-struck" T/mi mrow mrow mn1/mn mrow/msup/math
  • DOI:
    10.1016/j.aim.2025.110186
  • 发表时间:
    2025-05-01
  • 期刊:
  • 影响因子:
    1.500
  • 作者:
    Ciprian Demeter
  • 通讯作者:
    Ciprian Demeter

Ciprian Demeter的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ciprian Demeter', 18)}}的其他基金

Spatial restriction of exponential sums to thin sets and beyond
指数和对稀疏集及以上的空间限制
  • 批准号:
    2349828
  • 财政年份:
    2024
  • 资助金额:
    $ 5.87万
  • 项目类别:
    Standard Grant
Small Cap and Large Cap Decoupling
小盘股和大盘股脱钩
  • 批准号:
    2055156
  • 财政年份:
    2021
  • 资助金额:
    $ 5.87万
  • 项目类别:
    Standard Grant
Collaborative Research: New Decouplings and Applications
合作研究:新的解耦和应用
  • 批准号:
    1800305
  • 财政年份:
    2018
  • 资助金额:
    $ 5.87万
  • 项目类别:
    Continuing Grant
Decouplings and applications
解耦和应用
  • 批准号:
    1500461
  • 财政年份:
    2015
  • 资助金额:
    $ 5.87万
  • 项目类别:
    Continuing Grant
Problems in Time Frequency Analysis
时频分析中的问题
  • 批准号:
    1161752
  • 财政年份:
    2012
  • 资助金额:
    $ 5.87万
  • 项目类别:
    Continuing Grant
Multilinearity in one and two dimensions
一维和二维的多重线性
  • 批准号:
    0901208
  • 财政年份:
    2009
  • 资助金额:
    $ 5.87万
  • 项目类别:
    Standard Grant
Multilinear Operators in Harmonic Analysis and Ergodic Theory
调和分析和遍历理论中的多线性算子
  • 批准号:
    0556389
  • 财政年份:
    2006
  • 资助金额:
    $ 5.87万
  • 项目类别:
    Standard Grant

相似海外基金

Averaging operators and related topics in harmonic analysis
谐波分析中的平均运算符和相关主题
  • 批准号:
    2348797
  • 财政年份:
    2024
  • 资助金额:
    $ 5.87万
  • 项目类别:
    Standard Grant
Harmonic analysis of q-Laplace operators on quantum groups
量子群上q-拉普拉斯算子的调和分析
  • 批准号:
    23KJ1690
  • 财政年份:
    2023
  • 资助金额:
    $ 5.87万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Fourier Integral Operators and Maximal Functions in Harmonic Analysis
调和分析中的傅里叶积分算子和极大函数
  • 批准号:
    1954479
  • 财政年份:
    2020
  • 资助金额:
    $ 5.87万
  • 项目类别:
    Continuing Grant
Geometric Harmonic Analysis: Affine and Frobenius-Hormander Geometry for Multilinear Operators
几何调和分析:多线性算子的仿射和 Frobenius-Hormander 几何
  • 批准号:
    1764143
  • 财政年份:
    2018
  • 资助金额:
    $ 5.87万
  • 项目类别:
    Standard Grant
Operators on some function spaces in harmonic analysis
调和分析中某些函数空间上的运算符
  • 批准号:
    17K05289
  • 财政年份:
    2017
  • 资助金额:
    $ 5.87万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Harmonic Analysis and Partial Differential Operators
谐波分析和偏微分算子
  • 批准号:
    DP140100649
  • 财政年份:
    2014
  • 资助金额:
    $ 5.87万
  • 项目类别:
    Discovery Projects
Study of the operators on some function spaces in harmonic analysis
调和分析中某些函数空间算子的研究
  • 批准号:
    26400129
  • 财政年份:
    2014
  • 资助金额:
    $ 5.87万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Harmonic analysis of differential operators in Banach spaces
Banach空间中微分算子的调和分析
  • 批准号:
    DP120103692
  • 财政年份:
    2012
  • 资助金额:
    $ 5.87万
  • 项目类别:
    Discovery Projects
Researches on the structures of the spaces of analytic and harmonic functions and operators on them
解析调和函数空间结构及其算子的研究
  • 批准号:
    24540190
  • 财政年份:
    2012
  • 资助金额:
    $ 5.87万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Harmonic analysis: function spaces and singular integral operators
调和分析:函数空间和奇异积分算子
  • 批准号:
    DP120100399
  • 财政年份:
    2012
  • 资助金额:
    $ 5.87万
  • 项目类别:
    Discovery Projects
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了