Collaborative Research: New Decouplings and Applications
合作研究:新的解耦和应用
基本信息
- 批准号:1800305
- 负责人:
- 金额:$ 27万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-07-01 至 2022-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The principal investigators have recently advanced a new set of tools called decouplings, that can successfully quantify the ways in which waves traveling in different directions interact with each other. While these tools were initially intended for certain problems about differential equations, they have also led to important breakthroughs in number theory. More precisely, Diophantine equations are potentially complicated systems of equations involving whole numbers, and mathematicians are interested in counting the number of solutions to such systems. Unlike waves, numbers do not oscillate, at least not in an obvious manner, but one can think of numbers as frequencies, and thus associate them to waves. In this way, problems related to counting the number of solutions to Diophantine systems can be rephrased in the language of quantifying wave interferences. This project will further extend the scope of decouplings towards the resolution of fundamental problems in harmonic analysis and number theory. The project will make new tools accessible and useful to a large part of the mathematical community.Decouplings have proved remarkably flexible in addressing a wide variety of problems in such diverse fields as number theory, partial differential equations and harmonic analysis. One important circle of questions that remain to be addressed concerns the decoupling inequalities for curves on small spatial balls. Also, the cone poses a lot of interesting problems, even in three dimensions. The square function estimate, the local smoothing conjecture and, the decoupling into small caps are just a few examples of related problems for the cone. Progress on these problems is likely to lead to progress on many other problems. Finally, the combination of decouplings and the polynomial method has recently led to significant progress in the restriction theory of curved manifolds. The principal investigators intend to seek further improvements in this exciting and rapidly developing area.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
主要研究人员最近提出了一套称为解耦的新工具,可以成功量化沿不同方向传播的波相互作用的方式。虽然这些工具最初是用于解决微分方程的某些问题,但它们也带来了数论的重要突破。更准确地说,丢番图方程是涉及整数的潜在复杂方程组,数学家对计算此类系统的解的数量感兴趣。与波不同,数字不会振荡,至少不会以明显的方式振荡,但人们可以将数字视为频率,从而将它们与波联系起来。这样,与计算丢番图系统解的数量相关的问题就可以用量化波干扰的语言来重新表述。该项目将进一步扩展解耦的范围,以解决调和分析和数论中的基本问题。该项目将使数学界的大部分人都能使用和使用新工具。事实证明,解耦在解决数论、偏微分方程和调和分析等不同领域的各种问题方面非常灵活。有待解决的一系列重要问题涉及小空间球上曲线的解耦不等式。此外,圆锥体也带来了很多有趣的问题,即使是在三维空间中也是如此。平方函数估计、局部平滑猜想以及解耦为小型大写字母只是锥体相关问题的几个例子。这些问题上的进展可能会导致许多其他问题上的进展。最后,解耦和多项式方法的结合最近在弯曲流形的限制理论中取得了重大进展。主要研究人员打算在这个令人兴奋且快速发展的领域寻求进一步的改进。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Decouplings for real analytic surfaces of revolution
真实旋转解析曲面的解耦
- DOI:
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Bourgain, Jean;Demeter, Ciprian;Kemp, Dominique
- 通讯作者:Kemp, Dominique
Sharp $$\ell ^p$$-Improving Estimates for the Discrete Paraboloid
Sharp $$ell ^p$$ - 改进离散抛物面的估计
- DOI:10.1007/s00041-020-09801-2
- 发表时间:2021
- 期刊:
- 影响因子:1.2
- 作者:Dasu, Shival;Demeter, Ciprian;Langowski, Bartosz
- 通讯作者:Langowski, Bartosz
Small cap decouplings
小盘股脱钩
- DOI:10.1007/s00039-020-00541-5
- 发表时间:2020
- 期刊:
- 影响因子:2.2
- 作者:Demeter, Ciprian;Guth, Larry;Wang, Hong
- 通讯作者:Wang, Hong
Three applications of the Siegel mass formula
西格尔质量公式的三种应用
- DOI:
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Bourgain, Jean;Demeter, Ciprian
- 通讯作者:Demeter, Ciprian
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ciprian Demeter其他文献
Modulation invariant bilinear T(1) theorem
- DOI:
10.1007/s11854-009-0034-z - 发表时间:
2010-01-19 - 期刊:
- 影响因子:0.900
- 作者:
Árpád Bényi;Ciprian Demeter;Andrea R. Nahmod;Christoph M. Thiele;Rodolfo H. Torres;Paco Villarroya - 通讯作者:
Paco Villarroya
Endpoint Bounds for the Quartile Operator
- DOI:
10.1007/s00041-013-9275-4 - 发表时间:
2013-05-18 - 期刊:
- 影响因子:1.200
- 作者:
Ciprian Demeter;Francesco Di Plinio - 通讯作者:
Francesco Di Plinio
Bilinear Fourier Restriction Theorems
- DOI:
10.1007/s00041-012-9230-9 - 发表时间:
2012-06-06 - 期刊:
- 影响因子:1.200
- 作者:
Ciprian Demeter;S. Zubin Gautam - 通讯作者:
S. Zubin Gautam
Level set estimates for the periodic Schrödinger maximal function on math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.svg" class="math"msupmrowmi mathvariant="double-struck"T/mi/mrowmrowmn1/mn/mrow/msup/math
关于数学中周期薛定谔极大函数的水平集估计 xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.svg" class="math" msup mrow mi mathvariant="double-struck" T/mi mrow mrow mn1/mn mrow/msup/math
- DOI:
10.1016/j.aim.2025.110186 - 发表时间:
2025-05-01 - 期刊:
- 影响因子:1.500
- 作者:
Ciprian Demeter - 通讯作者:
Ciprian Demeter
Proof of the HRT conjecture for <math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll" class="math"><mo stretchy="false">(</mo><mn>2</mn><mo>,</mo><mn>2</mn><mo stretchy="false">)</mo></math> configurations
- DOI:
10.1016/j.jmaa.2011.11.030 - 发表时间:
2012-04-01 - 期刊:
- 影响因子:
- 作者:
Ciprian Demeter;Alexandru Zaharescu - 通讯作者:
Alexandru Zaharescu
Ciprian Demeter的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ciprian Demeter', 18)}}的其他基金
Spatial restriction of exponential sums to thin sets and beyond
指数和对稀疏集及以上的空间限制
- 批准号:
2349828 - 财政年份:2024
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
Multilinearity in one and two dimensions
一维和二维的多重线性
- 批准号:
0901208 - 财政年份:2009
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
Multilinear Operators in Harmonic Analysis and Ergodic Theory
调和分析和遍历理论中的多线性算子
- 批准号:
0742740 - 财政年份:2007
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
Multilinear Operators in Harmonic Analysis and Ergodic Theory
调和分析和遍历理论中的多线性算子
- 批准号:
0556389 - 财政年份:2006
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: REU Site: Earth and Planetary Science and Astrophysics REU at the American Museum of Natural History in Collaboration with the City University of New York
合作研究:REU 地点:地球与行星科学和天体物理学 REU 与纽约市立大学合作,位于美国自然历史博物馆
- 批准号:
2348998 - 财政年份:2025
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
Collaborative Research: REU Site: Earth and Planetary Science and Astrophysics REU at the American Museum of Natural History in Collaboration with the City University of New York
合作研究:REU 地点:地球与行星科学和天体物理学 REU 与纽约市立大学合作,位于美国自然历史博物馆
- 批准号:
2348999 - 财政年份:2025
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
Collaborative Research: Resolving the LGM ventilation age conundrum: New radiocarbon records from high sedimentation rate sites in the deep western Pacific
合作研究:解决LGM通风年龄难题:西太平洋深部高沉降率地点的新放射性碳记录
- 批准号:
2341426 - 财政年份:2024
- 资助金额:
$ 27万 - 项目类别:
Continuing Grant
Collaborative Research: Resolving the LGM ventilation age conundrum: New radiocarbon records from high sedimentation rate sites in the deep western Pacific
合作研究:解决LGM通风年龄难题:西太平洋深部高沉降率地点的新放射性碳记录
- 批准号:
2341424 - 财政年份:2024
- 资助金额:
$ 27万 - 项目类别:
Continuing Grant
Collaborative Research: New to IUSE: EDU DCL:Diversifying Economics Education through Plug and Play Video Modules with Diverse Role Models, Relevant Research, and Active Learning
协作研究:IUSE 新增功能:EDU DCL:通过具有不同角色模型、相关研究和主动学习的即插即用视频模块实现经济学教育多元化
- 批准号:
2315700 - 财政年份:2024
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
Collaborative Research: AF: Small: New Directions in Algorithmic Replicability
合作研究:AF:小:算法可复制性的新方向
- 批准号:
2342244 - 财政年份:2024
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
Collaborative Research: On New Directions for the Derivation of Wave Kinetic Equations
合作研究:波动力学方程推导的新方向
- 批准号:
2306378 - 财政年份:2024
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
Collaborative Research: New to IUSE: EDU DCL:Diversifying Economics Education through Plug and Play Video Modules with Diverse Role Models, Relevant Research, and Active Learning
协作研究:IUSE 新增功能:EDU DCL:通过具有不同角色模型、相关研究和主动学习的即插即用视频模块实现经济学教育多元化
- 批准号:
2315699 - 财政年份:2024
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
Collaborative Research: Understanding New Labor Relations for the 21st Century
合作研究:理解21世纪的新型劳动关系
- 批准号:
2346230 - 财政年份:2024
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
Collaborative Research: New Regression Models and Methods for Studying Multiple Categorical Responses
合作研究:研究多重分类响应的新回归模型和方法
- 批准号:
2415067 - 财政年份:2024
- 资助金额:
$ 27万 - 项目类别:
Continuing Grant














{{item.name}}会员




