The 29th Automorphic Forms Workshop
第29届自守形式研讨会
基本信息
- 批准号:1500710
- 负责人:
- 金额:$ 1.92万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-02-15 至 2017-01-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The 29th Annual Automorphic Forms Workshop (AFW) will be held March 2-5, 2015 at the University of Michigan in Ann Arbor, Michigan. Over the past three decades, the AFW has built a reputation as an internationally-recognized, well-respected conference attended by leading experts and junior researchers alike. The workshop is known for its inclusive, supportive atmosphere. Historically, about half of the presentations are given by mathematicians at early stages of their careers. Additionally, the workshop has a long history of involving women and members of other underrepresented groups in the automorphic forms community and facilitating the establishment of research connections. The workshop has led to many collaborations and research papers. Moreover, the workshop traditionally includes panel discussions on topics designed to further the mathematical careers of junior participants. This award supports participation in the workshop of twenty early-career U.S.-based mathematicians, including students. Additional information can be found at the workshop's website: automorphicformsworkshop.org.Automorphic forms, in all of their various guises, are of central importance in modern number theory and illuminate deep connections between number theory and other mathematical disciplines including coding theory, mathematical physics, representation theory and topology. Some of the most remarkable mathematical breakthroughs of the 20th century, for instance Wiles' proof of Fermat's Last Theorem, made extensive use of automorphic forms. Moreover, several celebrated conjectures, such as those of Langlands and Bloch-Kato, are automorphic in nature. Many important classes of automorphic forms have only recently been discovered, for instance the harmonic Maass forms and mock modular forms that underlie Ramanujan's mock theta functions. The 29th AFW will feature talks on all aspects of automorphic forms with a special emphasis on mock modular forms and their applications. The workshop will highlight recent developments in the field and catalyze future research progress.
第29届年度自同构表单研讨会(AFW)将于2015年3月2-5日在密歇根州安娜堡的密歇根大学举行。在过去的三十年里,AFW已经建立了一个国际公认的,备受尊敬的会议,由领先的专家和初级研究人员参加。研讨会以其包容、支持的氛围而闻名。从历史上看,大约一半的演讲是由处于职业生涯早期阶段的数学家做的。此外,讲习班长期以来一直吸引妇女和自同构形式社区中其他代表性不足群体的成员参加,并促进建立研究联系。研讨会促成了许多合作和研究论文。此外,该研讨会传统上包括小组讨论的主题,旨在进一步发展初级参与者的数学事业。该奖项支持20名美国早期数学家(包括学生)参加研讨会。自同构形式,以其各种形式,在现代数论中具有核心重要性,并阐明了数论与其他数学学科(包括编码理论、数学物理、表示理论和拓扑)之间的深刻联系。20世纪一些最显著的数学突破,例如怀尔斯对费马大定理的证明,都广泛使用了自同构形式。此外,一些著名的猜想,如朗兰兹和布洛赫-加藤的猜想,本质上是自同构的。许多重要的自同构形式直到最近才被发现,例如Ramanujan的模拟函数基础上的调和质量形式和模拟模形式。第29届AFW将以自同构形式的各个方面为特色,特别强调模拟模块形式及其应用。研讨会将重点介绍该领域的最新发展,并促进未来的研究进展。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Benjamin Linowitz其他文献
Parametrizing Shimura subvarieties of $${\mathrm{A}_1}$$ Shimura varieties and related geometric problems
- DOI:
10.1007/s00013-016-0944-9 - 发表时间:
2016-07-23 - 期刊:
- 影响因子:0.500
- 作者:
Benjamin Linowitz;Matthew Stover - 通讯作者:
Matthew Stover
CHARACTERIZING ADELIC HILBERT MODULAR CUSP FORMS BY COEFFICIENT SIZE
按系数大小表征 ADELIC HILBERT 模块化尖点形式
- DOI:
10.2206/kyushujm.68.105 - 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Benjamin Linowitz - 通讯作者:
Benjamin Linowitz
Small isospectral and nonisometric orbifolds of dimension 2 and 3
2 维和 3 维的小型等光谱和非等距轨道折叠
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Benjamin Linowitz;J. Voight - 通讯作者:
J. Voight
Selectivity in quaternion algebras
- DOI:
10.1016/j.jnt.2012.01.012 - 发表时间:
2012-07-01 - 期刊:
- 影响因子:
- 作者:
Benjamin Linowitz - 通讯作者:
Benjamin Linowitz
Parametrizing Shimura subvarieties of A 1 Shimura varieties and related geometric problems
A 1 Shimura 品种的参数化 Shimura 亚品种及相关几何问题
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Benjamin Linowitz;Matthew Stover - 通讯作者:
Matthew Stover
Benjamin Linowitz的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Benjamin Linowitz', 18)}}的其他基金
RUI: The Geometry of Arithmetic Locally Symmetric Spaces
RUI:算术局部对称空间的几何
- 批准号:
1905437 - 财政年份:2019
- 资助金额:
$ 1.92万 - 项目类别:
Standard Grant
相似海外基金
Collaborative Research: Conference: Texas-Oklahoma Representations and Automorphic forms (TORA)
合作研究:会议:德克萨斯州-俄克拉荷马州表示和自同构形式 (TORA)
- 批准号:
2347096 - 财政年份:2024
- 资助金额:
$ 1.92万 - 项目类别:
Standard Grant
Conference: International Conference on L-functions and Automorphic Forms
会议:L-函数和自同构国际会议
- 批准号:
2349888 - 财政年份:2024
- 资助金额:
$ 1.92万 - 项目类别:
Standard Grant
Collaborative Research: Conference: Texas-Oklahoma Representations and Automorphic forms (TORA)
合作研究:会议:德克萨斯州-俄克拉荷马州表示和自同构形式 (TORA)
- 批准号:
2347095 - 财政年份:2024
- 资助金额:
$ 1.92万 - 项目类别:
Standard Grant
Collaborative Research: Conference: Texas-Oklahoma Representations and Automorphic forms (TORA)
合作研究:会议:德克萨斯州-俄克拉荷马州表示和自同构形式 (TORA)
- 批准号:
2347097 - 财政年份:2024
- 资助金额:
$ 1.92万 - 项目类别:
Standard Grant
Automorphic Forms and the Langlands Program
自守形式和朗兰兹纲领
- 批准号:
2401353 - 财政年份:2024
- 资助金额:
$ 1.92万 - 项目类别:
Continuing Grant
Topics in automorphic Forms and Algebraic Cycles
自守形式和代数循环主题
- 批准号:
2401548 - 财政年份:2024
- 资助金额:
$ 1.92万 - 项目类别:
Continuing Grant
Conference: Workshop on Automorphic Forms and Related Topics
会议:自守形式及相关主题研讨会
- 批准号:
2401444 - 财政年份:2024
- 资助金额:
$ 1.92万 - 项目类别:
Standard Grant
Langlands correspondences and the arithmetic of automorphic forms
朗兰兹对应和自守形式的算术
- 批准号:
2302208 - 财政年份:2023
- 资助金额:
$ 1.92万 - 项目类别:
Continuing Grant
Chiral de Rham complex and automorphic forms
手性德拉姆复合体和自守形式
- 批准号:
23K19008 - 财政年份:2023
- 资助金额:
$ 1.92万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
L-Functions and Automorphic Forms: Algebraic and p-adic Aspects
L 函数和自守形式:代数和 p 进方面
- 批准号:
2302011 - 财政年份:2023
- 资助金额:
$ 1.92万 - 项目类别:
Standard Grant