p-adic Methods in Number Theory
数论中的 p-adic 方法
基本信息
- 批准号:1500868
- 负责人:
- 金额:$ 4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-05-01 至 2017-04-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This award provides support for participation in the conference "p-adic Methods in Number Theory" held at the University of California, Berkeley on May 26-30, 2015. Since their conception by Kurt Hensel around 1900, p-adic numbers have played a central role in number theory; for example, they are used in a crucial way in the proof of Fermat's Last Theorem. To a number theorist, p-adic numbers are just as "real" -- and just as important -- as real numbers. Both are ways of "filling in the gaps" left by considering just rational numbers. In their book "Number Theory I: Fermat's Dream," Kato, Kurokawa, and Saito write poetically, "In the long history of mathematics a number meant a real number, and it is only relatively recently that we realized that there is a world of p-adic numbers. It is as if those who had seen the sky only during the day are marveling at the night sky. [ ] Just as we can see space objects better at night, we begin to see the profound mathematical universe through the p-adic numbers." This conference will bring together experts in the many different facets of p-adic numbers and their applications, will promote a cross-fertilization of ideas between number theorists of all stripes, will expose graduate students and postdocs to state-of-the-art techniques and results, and will promote participation by underrepresented minorities and women in high-level number theory research. A conference on p-adic methods in number theory is timely and important, as many spectacular recent number-theoretic advances have made use of deep p-adic methods. We mention, for example, recent work establishing special cases of the p-adic local Langlands correspondence; the proof that most hyperelliptic curves of odd degree have just one rational point; developments on non-abelian Coleman integration and integral points on curves; work on the fundamental curve of p-adic Hodge theory; and recent results on perfectoid spaces. More Information can be found at https://sites.google.com/site/padicmethods2015/.
该奖项为参加2015年5月26-30日在加州大学伯克利分校举行的“数论中的p-ady方法”会议提供支持。自从大约1900年由Kurt Hensel提出p-进制数的概念以来,p-进制数在数论中起着重要的作用;例如,它们在费马大定理的证明中起到了至关重要的作用。对于数论家来说,p进位数和实数一样“真实”--而且同样重要。这两种方法都是填补只考虑有理数留下的空白的方法。在《数论I:费马之梦》一书中,加藤、黑川和斋藤诗意地写道:“在漫长的数学史上,数就是实数,直到最近我们才意识到有一个由p元数字组成的世界。就像那些只在白天看到天空的人都在惊叹夜空一样。就像我们在晚上能更好地看到太空物体一样,我们开始通过p元数来看待深刻的数学宇宙。”这次会议将汇聚p-进数字及其应用的许多不同方面的专家,将促进各种类型的数字理论家之间的思想交流,将使研究生和博士后接触到最先进的技术和结果,并将促进未被充分代表的少数民族和妇女参与高水平的数论研究。一次关于数论中的p-进方法的会议是及时而重要的,因为最近许多引人注目的数论进展都利用了深入的p-进方法。例如,我们提到了最近的工作,建立了p-进局部Langland对应的特例;证明了大多数奇次超椭圆曲线只有一个有理点;非交换Coleman积分和曲线上的积分点的发展;p-进Hodge理论的基本曲线的工作;以及关于完美半群空间的最新结果。欲了解更多信息,请访问https://sites.google.com/site/padicmethods2015/.。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Matthew Baker其他文献
Molecules de recepteur du facteur de necrose tumorale a immunogenicite reduite
具有免疫原性还原的肿瘤坏死因子受体分子
- DOI:
- 发表时间:
2004 - 期刊:
- 影响因子:0
- 作者:
Matthew Baker;Koen Hellendoorn - 通讯作者:
Koen Hellendoorn
Fibrinogen concentrate (Fibryga®) use in cardiac surgery: a single-centre retrospective analysis of coagulation correction and blood product administration
纤维蛋白原浓缩物(Fibryga®)在心脏手术中的应用:凝血纠正和血液制品给药的单中心回顾性分析
- DOI:
10.1016/j.bja.2022.10.026 - 发表时间:
2023-02-01 - 期刊:
- 影响因子:9.200
- 作者:
Matthew Baker;Dale Watson - 通讯作者:
Dale Watson
PS210. The Potential for Ascorbic Acid Mediated Nephroprotection in an Animal Model of Contrast-Induced Nephropathy following Endovascular Aneurysm Repair
- DOI:
10.1016/j.jvs.2012.03.200 - 发表时间:
2012-06-01 - 期刊:
- 影响因子:
- 作者:
Katie E. Rollins;Ayesha Noorani;Lucie Janeckova;Meryl Griffiths;Matthew Baker;Jonathan Boyle - 通讯作者:
Jonathan Boyle
4.0 Å Cryo-EM Structure of the Mammalian Chaperonin: TRiC/CCT
- DOI:
10.1016/j.bpj.2009.12.1202 - 发表时间:
2010-01-01 - 期刊:
- 影响因子:
- 作者:
Yao Cong;Matthew Baker;Joanita Jakana;David Woolford;Stefanie Reissmann;Steven J. Ludtke;Judith Frydman;Wah Chiu - 通讯作者:
Wah Chiu
Future Selves interventions: A critique of the current evidence base
未来的自我干预:对当前证据基础的批评
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Matthew Baker - 通讯作者:
Matthew Baker
Matthew Baker的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Matthew Baker', 18)}}的其他基金
The Algebra, Blueprinted Geometry, and Combinatorics of Matroids
拟阵的代数、蓝图几何和组合学
- 批准号:
2154224 - 财政年份:2022
- 资助金额:
$ 4万 - 项目类别:
Standard Grant
Berkovich Spaces, Tropical Geometry, Combinatorics, and Dynamics
伯科维奇空间、热带几何、组合学和动力学
- 批准号:
1502180 - 财政年份:2015
- 资助金额:
$ 4万 - 项目类别:
Standard Grant
Collaborative Research: ABI Innovation: Algorithms And Tools For Modeling Macromolecular Assemblies
合作研究:ABI 创新:大分子组装建模的算法和工具
- 批准号:
1356306 - 财政年份:2014
- 资助金额:
$ 4万 - 项目类别:
Standard Grant
Berkovich Spaces, Tropical Geometry, and Arithmetic Dynamics
伯科维奇空间、热带几何和算术动力学
- 批准号:
1201473 - 财政年份:2012
- 资助金额:
$ 4万 - 项目类别:
Continuing Grant
Connections Between Number Theory, Algebraic Geometry, and Combinatorics
数论、代数几何和组合数学之间的联系
- 批准号:
0901487 - 财政年份:2009
- 资助金额:
$ 4万 - 项目类别:
Continuing Grant
III-CXT: Collaborative Research: Integrated Modeling of Biological Nanomachines
III-CXT:协作研究:生物纳米机器的集成建模
- 批准号:
0705474 - 财政年份:2007
- 资助金额:
$ 4万 - 项目类别:
Standard Grant
Spectrometric and Spectroscopic Molecular Pathology and Diagnosis
光谱分析和光谱分子病理学与诊断
- 批准号:
EP/E039855/1 - 财政年份:2007
- 资助金额:
$ 4万 - 项目类别:
Fellowship
Analysis on Berkovich spaces and applications
Berkovich空间分析及应用
- 批准号:
0600027 - 财政年份:2006
- 资助金额:
$ 4万 - 项目类别:
Continuing Grant
相似国自然基金
Computational Methods for Analyzing Toponome Data
- 批准号:60601030
- 批准年份:2006
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
p-adic methods in number theory: eigenvarieties and cohomology of Shimura varieties for the study of L-functions and Galois representations
数论中的 p-adic 方法:用于研究 L 函数和伽罗瓦表示的 Shimura 簇的特征簇和上同调
- 批准号:
577144-2022 - 财政年份:2022
- 资助金额:
$ 4万 - 项目类别:
Alliance Grants
Effective methods in number theory
数论中的有效方法
- 批准号:
RGPIN-2019-04223 - 财政年份:2022
- 资助金额:
$ 4万 - 项目类别:
Discovery Grants Program - Individual
Entropy methods in Additive Combinatorics and Analytic Number Theory
加法组合学和解析数论中的熵方法
- 批准号:
2580868 - 财政年份:2021
- 资助金额:
$ 4万 - 项目类别:
Studentship
Algebraic and number theoretic methods for quantum circuits
量子电路的代数和数论方法
- 批准号:
RGPIN-2017-05161 - 财政年份:2021
- 资助金额:
$ 4万 - 项目类别:
Discovery Grants Program - Individual
Effective methods in number theory
数论中的有效方法
- 批准号:
RGPIN-2019-04223 - 财政年份:2021
- 资助金额:
$ 4万 - 项目类别:
Discovery Grants Program - Individual
Combinatorial and Representation Theoretic Methods in Number Theory
数论中的组合和表示论方法
- 批准号:
DE200101802 - 财政年份:2020
- 资助金额:
$ 4万 - 项目类别:
Discovery Early Career Researcher Award
A study on disaster case management methods to reduce the number of people who have difficulty in rebuilding their lives after a major disaster
减少重大灾害后重建生活困难人数的灾害案例管理方法研究
- 批准号:
20K21059 - 财政年份:2020
- 资助金额:
$ 4万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Effective methods in number theory
数论中的有效方法
- 批准号:
RGPIN-2019-04223 - 财政年份:2020
- 资助金额:
$ 4万 - 项目类别:
Discovery Grants Program - Individual
Algebraic and number theoretic methods for quantum circuits
量子电路的代数和数论方法
- 批准号:
RGPIN-2017-05161 - 财政年份:2020
- 资助金额:
$ 4万 - 项目类别:
Discovery Grants Program - Individual
Probabilistic and other methods in multiplicative number theory
乘法数论中的概率和其他方法
- 批准号:
2435444 - 财政年份:2020
- 资助金额:
$ 4万 - 项目类别:
Studentship