Connections Between Number Theory, Algebraic Geometry, and Combinatorics

数论、代数几何和组合数学之间的联系

基本信息

  • 批准号:
    0901487
  • 负责人:
  • 金额:
    $ 30.07万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-06-01 至 2013-05-31
  • 项目状态:
    已结题

项目摘要

This proposal is concerned with the development of new connections between arithmetic geometry, tropical geometry, Berkovich spaces, and combinatorics.The intellectual merit of the proposal lies primarily in the cross-fertilization between these different areas, and in the concrete applications being proposed. For example, the PI proposes to use ideas coming from algebraic geometry to provide new insight into the graph isomorphism problem, one of the most famous unsolved problems in graph theory and computer science.The PI will also show that harmonic morphisms, which play a prominent role in differential geometry and potential theory, arise naturally in arithmetic geometry, tropical geometry, and combinatorics. Applications will be given to a diverse array of subjects including component groups of Neron models, tropical intersection theory, and graph theory. Finally, the PI plans to develop new connections between Berkovich's theory of analytic spaces and tropical geometry. This will enable further development of the foundations of tropical geometry and potential theory on Berkovich spaces, and will also provide a more conceptual understanding of some recent results concerning tropical elliptic curves.The broader impacts of the proposed work will include applications to problems in the physical sciences, interaction with mathematicians in different fields, and support for undergraduate and graduate research. For example, the PI's new ideas on the graph isomorphism problem could potentially have applications to chemistry, biology, and computer science. Accomplishing the various goals laid out in this proposal will require the PI to interact with leading experts in the fields of number theory, algebraic geometry, combinatorics, and dynamical systems. The PI, who is currently supervising two graduate students and has been intensely involved for many years with undergraduate research, plans to work with students at all levels on research projects related to this proposal.
该提案涉及算术几何、热带几何、贝尔科维奇空间和组合学之间新联系的发展。该提案的智力价值主要在于这些不同领域之间的交叉融合,以及所提出的具体应用。 例如,PI建议利用代数几何的思想为图同构问题提供新的见解,这是图论和计算机科学中最著名的未解决问题之一。PI还将表明,调和态射在微分几何和势论中发挥着重要作用,自然出现在算术几何、热带几何和组合数学中。 应用程序将应用于各种学科,包括 Neron 模型的组成部分、热带交叉理论和图论。 最后,PI 计划在贝尔科维奇的解析空间理论和热带几何之间建立新的联系。 这将使热带几何和伯科维奇空间势理论的基础得到进一步发展,并且还将为有关热带椭圆曲线的一些最新结果提供更概念性的理解。拟议工作的更广泛影响将包括在物理科学问题中的应用、与不同领域的数学家的互动以及对本科生和研究生研究的支持。 例如,PI 关于图同构问题的新想法可能会应用于化学、生物学和计算机科学。 实现该提案中提出的各种目标需要 PI 与数论、代数几何、组合学和动力系统领域的领先专家进行互动。 该项目负责人目前正在指导两名研究生,多年来一直积极参与本科生研究,他计划与各级学生合作开展与该提案相关的研究项目。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Matthew Baker其他文献

Molecules de recepteur du facteur de necrose tumorale a immunogenicite reduite
具有免疫原性还原的肿瘤坏死因子受体分子
  • DOI:
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Matthew Baker;Koen Hellendoorn
  • 通讯作者:
    Koen Hellendoorn
Fibrinogen concentrate (Fibryga®) use in cardiac surgery: a single-centre retrospective analysis of coagulation correction and blood product administration
纤维蛋白原浓缩物(Fibryga®)在心脏手术中的应用:凝血纠正和血液制品给药的单中心回顾性分析
  • DOI:
    10.1016/j.bja.2022.10.026
  • 发表时间:
    2023-02-01
  • 期刊:
  • 影响因子:
    9.200
  • 作者:
    Matthew Baker;Dale Watson
  • 通讯作者:
    Dale Watson
PS210. The Potential for Ascorbic Acid Mediated Nephroprotection in an Animal Model of Contrast-Induced Nephropathy following Endovascular Aneurysm Repair
  • DOI:
    10.1016/j.jvs.2012.03.200
  • 发表时间:
    2012-06-01
  • 期刊:
  • 影响因子:
  • 作者:
    Katie E. Rollins;Ayesha Noorani;Lucie Janeckova;Meryl Griffiths;Matthew Baker;Jonathan Boyle
  • 通讯作者:
    Jonathan Boyle
4.0 Å Cryo-EM Structure of the Mammalian Chaperonin: TRiC/CCT
  • DOI:
    10.1016/j.bpj.2009.12.1202
  • 发表时间:
    2010-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Yao Cong;Matthew Baker;Joanita Jakana;David Woolford;Stefanie Reissmann;Steven J. Ludtke;Judith Frydman;Wah Chiu
  • 通讯作者:
    Wah Chiu
Future Selves interventions: A critique of the current evidence base
未来的自我干预:对当前证据基础的批评
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Matthew Baker
  • 通讯作者:
    Matthew Baker

Matthew Baker的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Matthew Baker', 18)}}的其他基金

The Algebra, Blueprinted Geometry, and Combinatorics of Matroids
拟阵的代数、蓝图几何和组合学
  • 批准号:
    2154224
  • 财政年份:
    2022
  • 资助金额:
    $ 30.07万
  • 项目类别:
    Standard Grant
Georgia Algebraic Geometry Symposium
乔治亚代数几何研讨会
  • 批准号:
    1902108
  • 财政年份:
    2019
  • 资助金额:
    $ 30.07万
  • 项目类别:
    Continuing Grant
Berkovich Spaces, Tropical Geometry, Combinatorics, and Dynamics
伯科维奇空间、热带几何、组合学和动力学
  • 批准号:
    1502180
  • 财政年份:
    2015
  • 资助金额:
    $ 30.07万
  • 项目类别:
    Standard Grant
p-adic Methods in Number Theory
数论中的 p-adic 方法
  • 批准号:
    1500868
  • 财政年份:
    2015
  • 资助金额:
    $ 30.07万
  • 项目类别:
    Standard Grant
Georgia Algebraic Geometry Symposium
乔治亚代数几何研讨会
  • 批准号:
    1529573
  • 财政年份:
    2015
  • 资助金额:
    $ 30.07万
  • 项目类别:
    Continuing Grant
Collaborative Research: ABI Innovation: Algorithms And Tools For Modeling Macromolecular Assemblies
合作研究:ABI 创新:大分子组装建模的算法和工具
  • 批准号:
    1356306
  • 财政年份:
    2014
  • 资助金额:
    $ 30.07万
  • 项目类别:
    Standard Grant
Berkovich Spaces, Tropical Geometry, and Arithmetic Dynamics
伯科维奇空间、热带几何和算术动力学
  • 批准号:
    1201473
  • 财政年份:
    2012
  • 资助金额:
    $ 30.07万
  • 项目类别:
    Continuing Grant
III-CXT: Collaborative Research: Integrated Modeling of Biological Nanomachines
III-CXT:协作研究:生物纳米机器的集成建模
  • 批准号:
    0705474
  • 财政年份:
    2007
  • 资助金额:
    $ 30.07万
  • 项目类别:
    Standard Grant
Spectrometric and Spectroscopic Molecular Pathology and Diagnosis
光谱分析和光谱分子病理学与诊断
  • 批准号:
    EP/E039855/1
  • 财政年份:
    2007
  • 资助金额:
    $ 30.07万
  • 项目类别:
    Fellowship
Analysis on Berkovich spaces and applications
Berkovich空间分析及应用
  • 批准号:
    0600027
  • 财政年份:
    2006
  • 资助金额:
    $ 30.07万
  • 项目类别:
    Continuing Grant

相似海外基金

Interactions between geometry, topology, number theory, and dynamics
几何、拓扑、数论和动力学之间的相互作用
  • 批准号:
    2303572
  • 财政年份:
    2023
  • 资助金额:
    $ 30.07万
  • 项目类别:
    Standard Grant
CAREER: Building bridges between number theory and harmonic analysis
职业:在数论和调和分析之间架起桥梁
  • 批准号:
    2237937
  • 财政年份:
    2023
  • 资助金额:
    $ 30.07万
  • 项目类别:
    Continuing Grant
Interaction between mathematical vocabulary, number sense, and schema in solving word problem
数学词汇、数感和图式在解决应用题中的相互作用
  • 批准号:
    22K03080
  • 财政年份:
    2022
  • 资助金额:
    $ 30.07万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Relation between propagation velocity and non-adiabatic temperature distribution of a flame front in low-Mach-number model
低马赫数模型中火焰锋传播速度与非绝热温度分布的关系
  • 批准号:
    22K13957
  • 财政年份:
    2022
  • 资助金额:
    $ 30.07万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Lifting surfaces in low Reynolds number flows: bridging the gap between laboratory research and practice
低雷诺数流中的升力面:弥合实验室研究与实践之间的差距
  • 批准号:
    RGPIN-2022-03352
  • 财政年份:
    2022
  • 资助金额:
    $ 30.07万
  • 项目类别:
    Discovery Grants Program - Individual
Connections between Algebra and Topology: Using algebraic number theory and TQFTs to study knots
代数与拓扑之间的联系:使用代数数论和 TQFT 研究纽结
  • 批准号:
    559329-2021
  • 财政年份:
    2022
  • 资助金额:
    $ 30.07万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Interactions between number theory and complex dynamical systems
数论与复杂动力系统之间的相互作用
  • 批准号:
    RGPIN-2017-05656
  • 财政年份:
    2022
  • 资助金额:
    $ 30.07万
  • 项目类别:
    Discovery Grants Program - Individual
Understanding the relationship between word and number processing
理解文字和数字处理之间的关系
  • 批准号:
    RGPIN-2020-05506
  • 财政年份:
    2022
  • 资助金额:
    $ 30.07万
  • 项目类别:
    Discovery Grants Program - Individual
Understanding the relationship between word and number processing
理解文字和数字处理之间的关系
  • 批准号:
    RGPIN-2020-05506
  • 财政年份:
    2021
  • 资助金额:
    $ 30.07万
  • 项目类别:
    Discovery Grants Program - Individual
The association between COVID-19 severity, human leukocyte antigen alleles and genomic copy number variants.
COVID-19 严重程度、人类白细胞抗原等位基因和基因组拷贝数变异之间的关联。
  • 批准号:
    458607
  • 财政年份:
    2021
  • 资助金额:
    $ 30.07万
  • 项目类别:
    Studentship Programs
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了