Commutative Algebra and its Interactions, July 31 - August 3, 2008
交换代数及其相互作用,2008年7月31日至8月3日
基本信息
- 批准号:0810844
- 负责人:
- 金额:$ 2.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-07-01 至 2009-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
ABSTRACT Principal Investigator: Smith, Karen E.Proposal Number: DMS - 0810844 Institution: University of Michigan Ann Arbor Title: Commutative Algebra and its InteractionsThis proposal is for a conference that will take place at the University of Michigan, Ann Arbor, July 31--August 5, 2008. The conference will focus on recent advances in commutative algebra, centered around areas which have been greatly influenced by the contributions of Mel Hochster. These include tight closure, singularities and multiplier ideals, the homological conjectures, invariant theory, local cohomology, the structure of free resolutions, and combinatorial commutative algebra. Hochster's research has had a transforming impact on the field, and there are several highly active areas which rely on his past and present work. We hope to bring together these areas for fruitful interaction. Commutative algebra is the study of equations: to paraphrase Hochster, "...algebra, after all, has to do with solving equations. Abstract algebra is the daughter of the theory of equations (in the broadest sense) and perhaps its best theorems still deal with that subject." Striking developments in the last few decades in commutative algebra have reinforced this view of commutative algebra. These developments include solutions to classical problems, as well as strengthened connections with diverse areas including algebraic topology, group cohomology, algebraic combinatorics, representation theory, invariant theory, and algebraic and arithmetic geometry. The invited speakers include experts in different areas, as well as several young researchers. The conference will provide an opportunity to present key results and recent advances. A special effort will be made to support the expenses of young researchers, women and minorities, graduate students, and those without alternative means of support.
摘要主要研究者:Smith,Karen E.提案编号:DMS - 0810844机构:密歇根大学安阿伯标题:交换代数及其相互作用本提案是为将于2008年7月31日至8月5日在密歇根大学安阿伯举行的会议提出的。会议将集中讨论交换代数的最新进展,围绕着梅尔·霍克斯特的贡献产生了很大影响的领域。这些包括紧闭包,奇点和乘子理想,同调代数,不变理论,局部上同调,自由决议的结构,和组合交换代数。Hochster的研究对该领域产生了变革性的影响,有几个高度活跃的领域依赖于他过去和现在的工作。我们希望将这些领域结合起来,进行富有成效的互动。交换代数是对方程的研究:套用Hochster的话,“......代数毕竟是解方程的。抽象代数是方程理论的女儿(在最广泛的意义上),也许它的最好的定理仍然处理这个问题。在过去的几十年里,交换代数的惊人发展加强了交换代数的这种观点。这些发展包括经典问题的解决方案,以及加强与不同领域的联系,包括代数拓扑,群上同调,代数组合学,表示论,不变理论,代数和算术几何。受邀的演讲者包括不同领域的专家,以及一些年轻的研究人员。会议将提供一个机会,介绍主要成果和最新进展。将作出特别努力,支持青年研究人员、妇女和少数民族、研究生以及没有其他支助手段的人的费用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Karen Smith其他文献
Evaluation of the Multi-Test device for immediate hypersensitivity skin testing.
用于立即过敏皮肤测试的多重测试装置的评估。
- DOI:
10.1016/0091-6749(92)90471-d - 发表时间:
1992 - 期刊:
- 影响因子:0
- 作者:
Robert B. Berkowitz;David G. Tinkelman;Cheryl Lutz;Angela Crummie;Karen Smith - 通讯作者:
Karen Smith
Critical discourse analysis and higher education research
批判性话语分析与高等教育研究
- DOI:
10.1108/s1479-3628(2013)0000009007 - 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Karen Smith - 通讯作者:
Karen Smith
Factors associated with emergency medical service delays in suspected ST‐elevation myocardial infarction in Victoria, Australia: A retrospective study
澳大利亚维多利亚州疑似 ST 段抬高型心肌梗死患者紧急医疗服务延误的相关因素:一项回顾性研究
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:2.3
- 作者:
Ahmad Alrawashdeh;Z. Nehme;B. Williams;Karen Smith;M. Stephenson;S. Bernard;P. Cameron;D. Stub - 通讯作者:
D. Stub
Residential aged care homes: Why do they call ‘000’? A study of the emergency prehospital care of older people living in residential aged care homes
居家养老院:为何将其称为“000”?对居家养老院老年人的院前紧急护理的研究
- DOI:
10.1111/1742-6723.13650 - 发表时间:
2020 - 期刊:
- 影响因子:2.3
- 作者:
R. Dwyer;B. Gabbe;T. Tran;Karen Smith;J. Lowthian - 通讯作者:
J. Lowthian
Differentiation of confirmed major trauma patients and potential major trauma patients using pre-hospital trauma triage criteria.
使用院前创伤分诊标准区分已确诊的重大创伤患者和潜在的重大创伤患者。
- DOI:
10.1016/j.injury.2010.03.035 - 发表时间:
2011 - 期刊:
- 影响因子:2.5
- 作者:
S. Cox;Karen Smith;A. Currell;L. Harriss;B. Barger;P. Cameron - 通讯作者:
P. Cameron
Karen Smith的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Karen Smith', 18)}}的其他基金
Studies in Commutative Algebra and Algebraic Geometry
交换代数和代数几何研究
- 批准号:
2200501 - 财政年份:2022
- 资助金额:
$ 2.5万 - 项目类别:
Continuing Grant
Commutative Algebra: Extremal Singularities in Prime Characteristic
交换代数:素数特征中的极值奇点
- 批准号:
2101075 - 财政年份:2021
- 资助金额:
$ 2.5万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Algebraic Geometry and Singularities in Positive and Mixed Characteristic
FRG:合作研究:代数几何和正特征和混合特征中的奇点
- 批准号:
1952399 - 财政年份:2020
- 资助金额:
$ 2.5万 - 项目类别:
Continuing Grant
Commutative Algebra: F-Regularity in Algebraic Geometry and Non-Commutative Algebra
交换代数:代数几何和非交换代数中的 F 正则性
- 批准号:
1801697 - 财政年份:2018
- 资助金额:
$ 2.5万 - 项目类别:
Continuing Grant
Algorithm Development For Reconstruction Of Design Elements
设计元素重构的算法开发
- 批准号:
1658987 - 财政年份:2017
- 资助金额:
$ 2.5万 - 项目类别:
Standard Grant
The Impact of the Stratosphere on Arctic Climate
平流层对北极气候的影响
- 批准号:
1603350 - 财政年份:2016
- 资助金额:
$ 2.5万 - 项目类别:
Standard Grant
Commutative Algebra: Frobenius in Geometry and Combinatorics
交换代数:几何和组合学中的弗罗贝尼乌斯
- 批准号:
1501625 - 财政年份:2015
- 资助金额:
$ 2.5万 - 项目类别:
Continuing Grant
EMSW21-RTG: Developing American Research Leadership in Algebraic Geometry and its Boundaries
EMSW21-RTG:发展美国在代数几何及其边界方面的研究领导地位
- 批准号:
0943832 - 财政年份:2010
- 资助金额:
$ 2.5万 - 项目类别:
Continuing Grant
Bringing Frobenius to Bear on Birational Algebraic Geometry
将弗罗贝尼乌斯应用于双有理代数几何
- 批准号:
1001764 - 财政年份:2010
- 资助金额:
$ 2.5万 - 项目类别:
Continuing Grant
Noncommutative Geometry and Cherednik Algebras
非交换几何和切里德尼克代数
- 批准号:
0555750 - 财政年份:2006
- 资助金额:
$ 2.5万 - 项目类别:
Continuing Grant
相似海外基金
Positive and Mixed Characteristic Birational Geometry and its Connections with Commutative Algebra and Arithmetic Geometry
正混合特征双有理几何及其与交换代数和算术几何的联系
- 批准号:
2401360 - 财政年份:2024
- 资助金额:
$ 2.5万 - 项目类别:
Standard Grant
Development of a brand-new computer algebra system using Julia language and its application
Julia语言全新计算机代数系统的开发及其应用
- 批准号:
20K03537 - 财政年份:2020
- 资助金额:
$ 2.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Construction of quantum walk model in Max-plus algebra and its application
Max-plus代数中量子行走模型的构建及其应用
- 批准号:
20K14367 - 财政年份:2020
- 资助金额:
$ 2.5万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Unified homological algebra encompassing exact, abelian, triangulated categories and its enhancement
包含精确、阿贝尔、三角范畴的统一同调代数及其增强
- 批准号:
20K03532 - 财政年份:2020
- 资助金额:
$ 2.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of linear solvers on max-plus algebra and its applications
max-plus代数线性求解器的开发及其应用
- 批准号:
19K03624 - 财政年份:2019
- 资助金额:
$ 2.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Geometric Algebra and its application in discrete geometry and topology
几何代数及其在离散几何和拓扑中的应用
- 批准号:
19F19721 - 财政年份:2019
- 资助金额:
$ 2.5万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Vector Space Model for Georefferenced Words' Algebra using Its Unevenness and Ubiquity
利用其不均匀性和普遍性的地理参考词代数向量空间模型
- 批准号:
19K11982 - 财政年份:2019
- 资助金额:
$ 2.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Summer Programs on Commutative Algebra and Its Interactions with Algebraic Geometry and on p-adic L-functions and Eigenvarieties
交换代数及其与代数几何的相互作用以及 p 进 L 函数和特征向量暑期课程
- 批准号:
1904501 - 财政年份:2019
- 资助金额:
$ 2.5万 - 项目类别:
Continuing Grant
Computer algebra based methods for hypergeometric functions in some variables and its applications
基于计算机代数的某些变量超几何函数的方法及其应用
- 批准号:
17K05292 - 财政年份:2017
- 资助金额:
$ 2.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Collaborative Research: Flag Algebra and Its Applications
合作研究:标记代数及其应用
- 批准号:
1600483 - 财政年份:2016
- 资助金额:
$ 2.5万 - 项目类别:
Standard Grant