Noncommutative Geometry and Cherednik Algebras
非交换几何和切里德尼克代数
基本信息
- 批准号:0555750
- 负责人:
- 金额:$ 34.46万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2006
- 资助国家:美国
- 起止时间:2006-07-01 至 2012-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project concerns the theory and application of ``noncommutative projective geometry'' or the interaction of projective algebraic geometry with noncommutative algebra. Roughly speaking and by analogy with the commutative situation, the category of graded modules modulo torsion over a noncommutative graded ring of quadratic, respectively cubic growth should be thought of as the noncommutative analogue of a projective curve, respectively surface. This intuition has lead to a remarkable number of nontrivial insights and results in noncommutative algebra. Indeed, the problem of classifying noncommutative curves (and noncommutative graded rings of quadratic growth) can be regarded as settled and the motivating theme behind much of this proposal will be to understand noncommutative surfaces. A large class of these algebras can be classified in terms of the ``naive'' blow-ups developed in collaboration with Keeler and Rogalski. Although these blow-ups are constructed in a manner reminiscent of commutative blowups, and depend upon geometric data, their structure is quite unlike the classical objects. A major portion of the project will be to further understand these objects and to extend their applications. The other major theme of the project will be in applications of this general theory to specific classes of algebras. A particularly useful technique, here, is to ``complete'' the category of modules over a noncommutative algebra to those over a graded algebra and then to apply noncommutative projective geometry. This has, for example, been used to relate rational Cherednik algebras in type A to Hilbert schemes, and to Haiman's work on the n! conjecture. The project will continue this research to gain a deeper understanding of these important algebras and their relation to other areas of mathematics, for example to integrable systems and to the study of invariant eigendistributions on symmetric spaces.Algebraic geometry, which is one of the oldest areas of modern mathematics, has its origins in the study of polynomial equations; for example a plane curve is the set of solutions of a polynomial equation in two variables. This leads to a rich interplay between that geometric object and the (commutative) algebra of the associated polynomials. Noncommutative algebra, which is a much younger subject, also has its origins in the theory of equations, in this case matrix equations, and in recent years has become increasingly important in many areas of mathematics (for example the theory of differential equations) and physics (Heisenberg's uncertainty principle is a classic illustration, but more subtle non-commutativity occurs, for example, in string theory). It has become apparent in recent years that there are definite, though often rather subtle, geometric structures hidden in these noncommutative objects and the interplay between the two has led to a rich theory, actually several theories, in their own right. These are collectively called noncommutative geometry.
这个项目涉及“非交换射影几何”的理论和应用或射影代数几何与非交换代数的相互作用。粗略地说,并通过类比交换的情况下,分次模的范畴扭转上的非交换分次环的二次,分别立方增长应被认为是非交换模拟的投影曲线,分别表面。这种直觉导致了显着数量的非平凡的见解和结果在非交换代数。事实上,分类非交换曲线(和二次增长的非交换分次环)的问题可以被认为是解决了,这个提议背后的动机主题将是理解非交换曲面。这些代数中的一大类可以根据与Keeler和Rogalski合作开发的“天真”爆破来分类。虽然这些爆破是以一种让人想起交换爆破的方式构造的,并且依赖于几何数据,但它们的结构与经典对象完全不同。该项目的主要部分将是进一步了解这些对象,并扩展其应用程序。该项目的另一个主要主题是将这一一般理论应用于特定类别的代数。一个特别有用的技术,在这里,是“完成”的范畴的模在一个非交换代数的那些分次代数,然后应用非交换射影几何。这已经,例如,被用来与合理的Cherednik代数在A型希尔伯特计划,并海曼的工作的n!猜想该项目将继续进行这项研究,以便更深入地了解这些重要的代数及其与其他数学领域的关系,例如与可积系统的关系和与对称空间上不变本征分布的研究的关系。例如,平面曲线是二元多项式方程的解的集合。这导致了几何对象和相关多项式的(交换)代数之间丰富的相互作用。非对易代数是一门年轻得多的学科,也起源于方程理论,在这里是矩阵方程,近年来在数学(例如微分方程理论)和物理学的许多领域变得越来越重要(海森堡的测不准原理是一个经典的例子,但更微妙的非对易性出现在弦理论中)。近年来,我们已经清楚地看到,在这些非对易物体中隐藏着明确的、尽管常常相当微妙的几何结构,这两者之间的相互作用已经导致了一个丰富的理论,实际上是几个理论。这些被统称为非对易几何。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Karen Smith其他文献
『功利主義と政策思想の展開』第3章「シジウィック・ムーア・ピグー-功利主義・正義の観点から-」(音無通宏編)
《功利主义与政策思想的发展》第3章《西奇威克、摩尔和庇古——从功利主义和正义的视角》(音无道弘主编)
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Chulhee Kang;Femida Handy;Lesley Hustinx;Ram Cnaan;Jeffrey L.Brudney;Debbie Haski-Leventhal;Kirsten Holmes;Lucas Meijs;Anne Birgitta Pessi;Bhagyashree Ranade;Karen Smith;Naoto Yamauchi;Sinisa Zrinscak;山崎聡 - 通讯作者:
山崎聡
Differentiation of confirmed major trauma patients and potential major trauma patients using pre-hospital trauma triage criteria.
使用院前创伤分诊标准区分已确诊的重大创伤患者和潜在的重大创伤患者。
- DOI:
10.1016/j.injury.2010.03.035 - 发表时间:
2011 - 期刊:
- 影响因子:2.5
- 作者:
S. Cox;Karen Smith;A. Currell;L. Harriss;B. Barger;P. Cameron - 通讯作者:
P. Cameron
Testing for Drugs of Abuse in Children and Adolescents: Addendum—Testing in Schools and at Home
儿童和青少年滥用药物检测:附录 — 在学校和家庭进行检测
- DOI:
10.1542/peds.2006-3688 - 发表时间:
2007 - 期刊:
- 影响因子:8
- 作者:
Alain Joffe;Marylou Behnke;J. Knight;P. Kokotailo;Tammy H. Sims;Janet Williams;J. Kulig;Deborah Simkin;Linn Goldberg;Sharon Levy;Karen Smith;Robert D. Murray;B. L. Frankowski;R. Gereige;C. Mears;Michele M. Roland;Thomas L. Young;Linda M. Grant;Daniel Hyman;Harold Magalnick;George J. Monteverdi;Evan G. Pattishall;Nancy LaCursia;Donna Mazyck;Mary E. Vernon;Robin Wallace;Madra Guinn - 通讯作者:
Madra Guinn
Residential aged care homes: Why do they call ‘000’? A study of the emergency prehospital care of older people living in residential aged care homes
居家养老院:为何将其称为“000”?对居家养老院老年人的院前紧急护理的研究
- DOI:
10.1111/1742-6723.13650 - 发表时间:
2020 - 期刊:
- 影响因子:2.3
- 作者:
R. Dwyer;B. Gabbe;T. Tran;Karen Smith;J. Lowthian - 通讯作者:
J. Lowthian
Energy in Schools: Empowering Children to Deliver Behavioural Change for Sustainability
学校活力:赋予儿童行为改变以实现可持续发展的能力
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
L. Underwood;Karen Smith;Elisa Rubegni;J. Finney - 通讯作者:
J. Finney
Karen Smith的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Karen Smith', 18)}}的其他基金
Studies in Commutative Algebra and Algebraic Geometry
交换代数和代数几何研究
- 批准号:
2200501 - 财政年份:2022
- 资助金额:
$ 34.46万 - 项目类别:
Continuing Grant
Commutative Algebra: Extremal Singularities in Prime Characteristic
交换代数:素数特征中的极值奇点
- 批准号:
2101075 - 财政年份:2021
- 资助金额:
$ 34.46万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Algebraic Geometry and Singularities in Positive and Mixed Characteristic
FRG:合作研究:代数几何和正特征和混合特征中的奇点
- 批准号:
1952399 - 财政年份:2020
- 资助金额:
$ 34.46万 - 项目类别:
Continuing Grant
Commutative Algebra: F-Regularity in Algebraic Geometry and Non-Commutative Algebra
交换代数:代数几何和非交换代数中的 F 正则性
- 批准号:
1801697 - 财政年份:2018
- 资助金额:
$ 34.46万 - 项目类别:
Continuing Grant
Algorithm Development For Reconstruction Of Design Elements
设计元素重构的算法开发
- 批准号:
1658987 - 财政年份:2017
- 资助金额:
$ 34.46万 - 项目类别:
Standard Grant
The Impact of the Stratosphere on Arctic Climate
平流层对北极气候的影响
- 批准号:
1603350 - 财政年份:2016
- 资助金额:
$ 34.46万 - 项目类别:
Standard Grant
Commutative Algebra: Frobenius in Geometry and Combinatorics
交换代数:几何和组合学中的弗罗贝尼乌斯
- 批准号:
1501625 - 财政年份:2015
- 资助金额:
$ 34.46万 - 项目类别:
Continuing Grant
EMSW21-RTG: Developing American Research Leadership in Algebraic Geometry and its Boundaries
EMSW21-RTG:发展美国在代数几何及其边界方面的研究领导地位
- 批准号:
0943832 - 财政年份:2010
- 资助金额:
$ 34.46万 - 项目类别:
Continuing Grant
Bringing Frobenius to Bear on Birational Algebraic Geometry
将弗罗贝尼乌斯应用于双有理代数几何
- 批准号:
1001764 - 财政年份:2010
- 资助金额:
$ 34.46万 - 项目类别:
Continuing Grant
Commutative Algebra and its Interactions, July 31 - August 3, 2008
交换代数及其相互作用,2008年7月31日至8月3日
- 批准号:
0810844 - 财政年份:2008
- 资助金额:
$ 34.46万 - 项目类别:
Standard Grant
相似国自然基金
2019年度国际理论物理中心-ICTP School on Geometry and Gravity (smr 3311)
- 批准号:11981240404
- 批准年份:2019
- 资助金额:1.5 万元
- 项目类别:国际(地区)合作与交流项目
新型IIIB、IVB 族元素手性CGC金属有机化合物(Constrained-Geometry Complexes)的合成及反应性研究
- 批准号:20602003
- 批准年份:2006
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Conference: Amplituhedra, Cluster Algebras and Positive Geometry
会议:幅面体、簇代数和正几何
- 批准号:
2412346 - 财政年份:2024
- 资助金额:
$ 34.46万 - 项目类别:
Standard Grant
RTG: Numbers, Geometry, and Symmetry at Berkeley
RTG:伯克利分校的数字、几何和对称性
- 批准号:
2342225 - 财政年份:2024
- 资助金额:
$ 34.46万 - 项目类别:
Continuing Grant
Conference: Latin American School of Algebraic Geometry
会议:拉丁美洲代数几何学院
- 批准号:
2401164 - 财政年份:2024
- 资助金额:
$ 34.46万 - 项目类别:
Standard Grant
Positive and Mixed Characteristic Birational Geometry and its Connections with Commutative Algebra and Arithmetic Geometry
正混合特征双有理几何及其与交换代数和算术几何的联系
- 批准号:
2401360 - 财政年份:2024
- 资助金额:
$ 34.46万 - 项目类别:
Standard Grant
Spheres of Influence: Arithmetic Geometry and Chromatic Homotopy Theory
影响范围:算术几何和色同伦理论
- 批准号:
2401472 - 财政年份:2024
- 资助金额:
$ 34.46万 - 项目类别:
Continuing Grant
Postdoctoral Fellowship: MPS-Ascend: Topological Enrichments in Enumerative Geometry
博士后奖学金:MPS-Ascend:枚举几何中的拓扑丰富
- 批准号:
2402099 - 财政年份:2024
- 资助金额:
$ 34.46万 - 项目类别:
Fellowship Award
Conference: Collaborative Workshop in Algebraic Geometry
会议:代数几何合作研讨会
- 批准号:
2333970 - 财政年份:2024
- 资助金额:
$ 34.46万 - 项目类别:
Standard Grant
CAREER: Large scale geometry and negative curvature
职业:大规模几何和负曲率
- 批准号:
2340341 - 财政年份:2024
- 资助金额:
$ 34.46万 - 项目类别:
Continuing Grant
CAREER: Geometry and topology of quantum materials
职业:量子材料的几何和拓扑
- 批准号:
2340394 - 财政年份:2024
- 资助金额:
$ 34.46万 - 项目类别:
Continuing Grant