Curves, covers, and cohomology
曲线、覆盖和上同调
基本信息
- 批准号:1502227
- 负责人:
- 金额:$ 15.45万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-08-15 至 2019-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
An underlying theme of arithmetic geometry is the existence of solutions to polynomial equations whose coefficients lie in fields other than the complex numbers. Historically, equations having extra symmetry have been a focus of inquiry since the automorphisms of the corresponding geometric object provide extra structure which helps illuminate the set of solutions. The PI's research is about functions on curves defined by polynomial equations with coefficients in a finite field. The goal is to analyze invariants of algebraic structures attached to these curves, to determine how these invariants vary across parameter spaces for the curves, and to investigate which exceptional structures occur. As a broader impact of the proposal, the PI will collaborate with the Fort Collins Museum of Discovery to build activity kits about cryptography for children. The PI is also involved with other initiatives that have broader impacts: the PI is a leader of the WIN network, whose goal is to vitalize the research careers of women in number theory via new research collaborations; and the PI was a co-organizer of the Arizona Winter School from 2010-2015. Curves and abelian varieties exhibit new phenomena in positive characteristic p. These phenomena typically arise due to the underlying presence of morphisms of degree p. They lead to important cohomological invariants, such as the p-rank, Newton polygon, and Ekedahl-Oort type. The goal of the PI's proposal is to prove: (non)-existence results about abelian varieties and curves with given invariants; and structural results about the stratifications induced by the invariants on various moduli spaces. In particular, the PI will investigate supersingular abelian varieties and Jacobians; the interplay between automorphisms and p-torsion invariants; formulae, akin to the Deuring-Shafarevich formula, for the variation in more refined invariants of the Ekedahl-Oort type in terms of ramification data; and rational points of curves over non-algebraically closed fields. Key techniques include: intersection of divisors on moduli spaces; degeneration to singular curves of compact type; results about monodromy of families of curves; cohomology calculations (de Rham or of resolutions); and actions of Frobenius and Vershiebung.
算术几何的一个基本主题是多项式方程的解的存在性,其系数位于复数以外的域中。从历史上看,具有额外对称性的方程一直是研究的焦点,因为相应几何对象的自同构提供了有助于照亮解集合的额外结构。PI的研究是关于由有限域上系数的多项式方程所定义的曲线上的函数。我们的目标是分析这些曲线上的代数结构的不变量,确定这些不变量如何在曲线的参数空间中变化,并调查哪些特殊结构会发生。作为该提案的更广泛影响,PI将与柯林斯堡发现博物馆合作,为儿童制作关于密码学的活动工具包。国际和平协会还参与了其他具有更广泛影响的倡议:国际和平协会是WIN网络的领导者,其目标是通过新的研究合作振兴女性在数论方面的研究生涯;国际和平协会在2010-2015年间是亚利桑那州冬季学校的联合组织者。曲线和交换簇在正特征p中表现出新的现象。这些现象通常是由于p次态射的潜在存在而产生的。它们导致了重要的上同调不变量,如p-秩、牛顿多边形和Ekedahl-Oort型。PI建议的目的是证明:(非)-关于给定不变量的交换簇和曲线的存在性结果;以及关于各种模空间上由不变量引起的分层的结构性结果。特别是,PI将研究超奇异阿贝尔变种和雅可比;自同构和p-扭转不变量之间的相互作用;公式,类似于Deuring-Shafarevich公式,根据分支数据,用于更精细的Ekedahl-Oort型不变量的变化;以及非代数闭域上曲线的有理点。关键技术包括:模空间上因子的交集;紧致型奇异曲线的退化;曲线族单行的结果;上同调计算(de Rham或归结);Frobenius和Vershiebung的作用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rachel Pries其他文献
Alternating group covers of the affine line
- DOI:
10.1007/s11856-011-0165-7 - 发表时间:
2012-06-12 - 期刊:
- 影响因子:0.800
- 作者:
Jeremy Muskat;Rachel Pries - 通讯作者:
Rachel Pries
The automorphism groups of a family of maximal curves
- DOI:
10.1016/j.jalgebra.2012.03.036 - 发表时间:
2012-07-01 - 期刊:
- 影响因子:
- 作者:
Robert Guralnick;Beth Malmskog;Rachel Pries - 通讯作者:
Rachel Pries
The Galois action on the lower central series of the fundamental group of the Fermat curve
- DOI:
10.1007/s11856-023-2571-z - 发表时间:
2023-11-13 - 期刊:
- 影响因子:0.800
- 作者:
Rachel Davis;Rachel Pries;Kirsten Wickelgren - 通讯作者:
Kirsten Wickelgren
Mass formula for non-ordinary curves in one dimensional families
- DOI:
10.1007/s00229-024-01610-x - 发表时间:
2025-01-17 - 期刊:
- 影响因子:0.600
- 作者:
Renzo Cavalieri;Rachel Pries - 通讯作者:
Rachel Pries
Rachel Pries的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Rachel Pries', 18)}}的其他基金
Evaluating Actions, Obstructions, and Reductions for Covers of Curves
评估曲线覆盖的动作、障碍和缩减
- 批准号:
2200418 - 财政年份:2022
- 资助金额:
$ 15.45万 - 项目类别:
Standard Grant
Measuring Galois Actions and Moduli Spaces
测量伽罗瓦作用和模空间
- 批准号:
1901819 - 财政年份:2019
- 资助金额:
$ 15.45万 - 项目类别:
Continuing Grant
Moduli of curves in positive characteristic: stratifications and filtrations
正特性曲线模数:分层和过滤
- 批准号:
1101712 - 财政年份:2011
- 资助金额:
$ 15.45万 - 项目类别:
Standard Grant
The p-rank and ramification structure of covers of curves in characteristic p
特征p中曲线覆盖的p阶和分支结构
- 批准号:
0701303 - 财政年份:2007
- 资助金额:
$ 15.45万 - 项目类别:
Standard Grant
Moduli spaces for wildly ramified covers of curves
曲线的广泛分支覆盖的模空间
- 批准号:
0400461 - 财政年份:2004
- 资助金额:
$ 15.45万 - 项目类别:
Standard Grant
相似海外基金
Thermo-Regulating Mobile Covers for Indoor Energy Savings
用于室内节能的温度调节移动罩
- 批准号:
EP/Y030397/1 - 财政年份:2024
- 资助金额:
$ 15.45万 - 项目类别:
Research Grant
Creating a practical training course that covers from commonality and diversity of living organisms to molecular biology based on mating
创建实用培训课程,涵盖从生物体的共性和多样性到基于交配的分子生物学
- 批准号:
23K02762 - 财政年份:2023
- 资助金额:
$ 15.45万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Impact of differential settlement of oil sand fine tailings on reclamation covers
油砂细尾矿差异沉降对复垦覆盖层的影响
- 批准号:
RGPIN-2019-04573 - 财政年份:2022
- 资助金额:
$ 15.45万 - 项目类别:
Discovery Grants Program - Individual
Testing effects of soil amendments on nutrient poor mine covers soils at the MOST Facility
在 MOST 设施中测试土壤改良剂对营养不良矿井覆盖土壤的影响
- 批准号:
571034-2021 - 财政年份:2022
- 资助金额:
$ 15.45万 - 项目类别:
Alliance Grants
Assessment of landfill final covers employing contaminated soils
使用受污染土壤评估垃圾填埋场最终覆盖层
- 批准号:
575428-2022 - 财政年份:2022
- 资助金额:
$ 15.45万 - 项目类别:
Alliance Grants
Integration of clayey materials in the engineered covers and improvement of their performance evaluation techniques
将粘土材料整合到工程覆盖层中并改进其性能评估技术
- 批准号:
RGPIN-2017-06787 - 财政年份:2022
- 资助金额:
$ 15.45万 - 项目类别:
Discovery Grants Program - Individual
Geochemical implications of soil covers on oil sands sulfide tailings
土壤覆盖对油砂硫化物尾矿的地球化学影响
- 批准号:
545559-2020 - 财政年份:2022
- 资助金额:
$ 15.45万 - 项目类别:
Postgraduate Scholarships - Doctoral
Evaluating Actions, Obstructions, and Reductions for Covers of Curves
评估曲线覆盖的动作、障碍和缩减
- 批准号:
2200418 - 财政年份:2022
- 资助金额:
$ 15.45万 - 项目类别:
Standard Grant
MPS-Ascend: Bi-Orderability, Fibered Knots, and Cyclic Branched Covers
MPS-Ascend:双向可排序性、纤维结和循环分支覆盖层
- 批准号:
2213213 - 财政年份:2022
- 资助金额:
$ 15.45万 - 项目类别:
Fellowship Award
CAREER: Branched Covers in Dimensions Three and Four
职业:第三维度和第四维度的分支封面
- 批准号:
2145384 - 财政年份:2022
- 资助金额:
$ 15.45万 - 项目类别:
Continuing Grant