The p-rank and ramification structure of covers of curves in characteristic p

特征p中曲线覆盖的p阶和分支结构

基本信息

  • 批准号:
    0701303
  • 负责人:
  • 金额:
    $ 12万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2007
  • 资助国家:
    美国
  • 起止时间:
    2007-07-15 至 2011-06-30
  • 项目状态:
    已结题

项目摘要

Abstract for NSF grant DMS-0701303 of PriesThe p-rank and ramification structure of covers of curves in characteristic p.Galois theory and number theory have high appeal to a broad audience. Several open problems in this area can be explained to non-mathematicians and the topic connects diverse areas of math. Galois theory arose classically as a means of understanding symmetries of equations and of classifying extensions of the rational numbers. Number theory arose classically as a way of finding integer solutions to diophantine equations. There are modern applications of Galois theory and number theory to data-transfer codes. One of the goals of the PI is to increase activity in number theory in the Colorado region. The graduate students of the PI are integrally involved in the research in this proposal. The PI is a co-organizer of the new Front Range Number Theory Colloquium. This seminar has participants from at least five institutions in Colorado and Wyoming. It leads to increased research and communication about number theory in this geographic region.Galois covers and Jacobians of complex curves are well-understood subjects. In characteristic p, there are new phenomena that lead to major open problems on the topic of Galois covers and Jacobians of curves. These phenomena involve wildly ramified group actions on curves and the p-rank of curves. Let k be an algebraically closed field of characteristic p 0. Let C be a smooth connected projective k-curve of genus g. The p-rank of C is the integer f between 0 and g so that the number of p-torsion points on the Jacobian of C equals p raised to the power f. The PI proposes a research project about the p-rank and ramification structure of covers of k-curves. As applications, the PI plans to:1) determine the minimal genus of a G-Galois cover of the affine line for many groups G;2) determine the number of irreducible components of the moduli space of Artin-Schreier curves of genus g;3) show a generic curve with genus g and p-rank f has a-number 1 if fg;4) show there exists a smooth k-curve of genus g and p-rank f whose Jacobian is absolutely irreducible for every g 2 and every f between 0 and g.The arithmetic objects appearing in the proposal include ramification filtrations, norm groups, group schemes, and monodromy groups. The geometric techniques used for the proposal include deformation, formal patching, and stratifications of moduli spaces of curves.
摘要:美国国家科学基金会资助DMS-0701303的Priesp-秩和分支结构的覆盖曲线的特征p,伽罗瓦理论和数论有很高的吸引力,以广泛的观众。 几个开放的问题,在这方面可以解释非数学家和主题连接不同领域的数学。伽罗瓦理论出现经典的一种手段,了解对称性的方程和分类扩展的有理数。 数论作为一种寻找丢番图方程整数解的方法而出现。 伽罗瓦理论和数论在数据传输代码中有现代应用。 PI的目标之一是增加科罗拉多地区数论的活动。 PI的研究生整体参与了本提案的研究。 PI是新的前线数论讨论会的共同组织者。 这个研讨会有来自科罗拉多和怀俄明州至少五个机构的参与者。 这导致了该地理区域数论研究和交流的增加。复杂曲线的伽罗瓦覆盖和雅可比矩阵是很好理解的主题。 在特征p,有新的现象,导致主要的公开问题的主题伽罗瓦覆盖和雅可比曲线。 这些现象涉及曲线上的广泛分歧的群作用和曲线的p秩。 设k是特征为p 0的代数闭域. 设C是亏格为g的光滑连通射影k-曲线。 C的p-秩是0和g之间的整数f,使得C的雅可比矩阵上的p-扭点的数量等于p的f次幂。 PI提出了一个关于k-曲线覆盖的p-秩和分支结构的研究项目。 作为应用,PI计划:1)确定多个群G的仿射线的G-Galois覆盖的最小亏格;2)确定亏格为g的Artin-Schreier曲线的模空间的不可约分支的个数;3)证明亏格为g且p秩f的一般曲线的个数为1,如果fg; 4)证明了存在亏格为g和p的光滑k曲线。秩f,其雅可比矩阵对于每个g 2和0到g之间的每个f都是绝对不可约的。提案中出现的算术对象包括分歧滤子,范数群,群方案,和monodromy组。 几何技术用于建议包括变形,正式修补,和分层的模空间的曲线。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Rachel Pries其他文献

Alternating group covers of the affine line
  • DOI:
    10.1007/s11856-011-0165-7
  • 发表时间:
    2012-06-12
  • 期刊:
  • 影响因子:
    0.800
  • 作者:
    Jeremy Muskat;Rachel Pries
  • 通讯作者:
    Rachel Pries
The automorphism groups of a family of maximal curves
  • DOI:
    10.1016/j.jalgebra.2012.03.036
  • 发表时间:
    2012-07-01
  • 期刊:
  • 影响因子:
  • 作者:
    Robert Guralnick;Beth Malmskog;Rachel Pries
  • 通讯作者:
    Rachel Pries
The Galois action on the lower central series of the fundamental group of the Fermat curve
  • DOI:
    10.1007/s11856-023-2571-z
  • 发表时间:
    2023-11-13
  • 期刊:
  • 影响因子:
    0.800
  • 作者:
    Rachel Davis;Rachel Pries;Kirsten Wickelgren
  • 通讯作者:
    Kirsten Wickelgren
Mass formula for non-ordinary curves in one dimensional families
  • DOI:
    10.1007/s00229-024-01610-x
  • 发表时间:
    2025-01-17
  • 期刊:
  • 影响因子:
    0.600
  • 作者:
    Renzo Cavalieri;Rachel Pries
  • 通讯作者:
    Rachel Pries

Rachel Pries的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Rachel Pries', 18)}}的其他基金

Evaluating Actions, Obstructions, and Reductions for Covers of Curves
评估曲线覆盖的动作、障碍和缩减
  • 批准号:
    2200418
  • 财政年份:
    2022
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
Measuring Galois Actions and Moduli Spaces
测量伽罗瓦作用和模空间
  • 批准号:
    1901819
  • 财政年份:
    2019
  • 资助金额:
    $ 12万
  • 项目类别:
    Continuing Grant
Curves, covers, and cohomology
曲线、覆盖和上同调
  • 批准号:
    1502227
  • 财政年份:
    2015
  • 资助金额:
    $ 12万
  • 项目类别:
    Continuing Grant
Moduli of curves in positive characteristic: stratifications and filtrations
正特性曲线模数:分层和过滤
  • 批准号:
    1101712
  • 财政年份:
    2011
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
Moduli spaces for wildly ramified covers of curves
曲线的广泛分支覆盖的模空间
  • 批准号:
    0400461
  • 财政年份:
    2004
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant

相似海外基金

Double Ramification Cycles and Tautological Classes
双分支循环和同义反复类
  • 批准号:
    2301506
  • 财政年份:
    2023
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
Period Domains, Motives, and Ramification Theory in Arithmetic Geometry
算术几何中的周期域、动机和衍生理论
  • 批准号:
    2001182
  • 财政年份:
    2020
  • 资助金额:
    $ 12万
  • 项目类别:
    Continuing Grant
characteristic cycles and ramification of etale sheaves
etale 滑轮的特征循环和分支
  • 批准号:
    19H01780
  • 财政年份:
    2019
  • 资助金额:
    $ 12万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Invariants of ramification and characteristic cycles of sheaves
滑轮的分支不变量和特征循环
  • 批准号:
    19K21020
  • 财政年份:
    2018
  • 资助金额:
    $ 12万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Ramification theory of automorphic representations and arithmetic of special L-values
自守表示的分支理论和特殊L值的算术
  • 批准号:
    15K04784
  • 财政年份:
    2015
  • 资助金额:
    $ 12万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Ramification, Multiplicity, and Volume
分支、多重性和体积
  • 批准号:
    1360564
  • 财政年份:
    2014
  • 资助金额:
    $ 12万
  • 项目类别:
    Continuing Grant
Non-abelian extensions of number fields with restricted ramification
具有有限分支的数域的非阿贝尔扩张
  • 批准号:
    25400028
  • 财政年份:
    2013
  • 资助金额:
    $ 12万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Automorphic forms, Galois representations and ramification
自守形式、伽罗瓦表示和衍生
  • 批准号:
    1161671
  • 财政年份:
    2012
  • 资助金额:
    $ 12万
  • 项目类别:
    Continuing Grant
RUI: Families, Ramification, and Berkovich Spaces in Non-archimedean Dynamics
RUI:非阿基米德动力学中的族、分支和伯科维奇空间
  • 批准号:
    1201341
  • 财政年份:
    2012
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
Ramification in the geometric Langlands correspondence The Breuil-Mezard conjecture (M03/Erg.)
几何朗兰兹对应中的分支布勒伊-梅扎德猜想 (M03/Erg.)
  • 批准号:
    229914418
  • 财政年份:
    2012
  • 资助金额:
    $ 12万
  • 项目类别:
    CRC/Transregios
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了