Molecular Photonics in the Strong Coupling Regime
强耦合状态下的分子光子学
基本信息
- 批准号:RGPIN-2020-06566
- 负责人:
- 金额:$ 3.64万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Light-matter interaction is at the heart of most optical phenomena that we are familiar with such as absorption, emission and scattering. We normally treat these by assuming that light does not significantly modify the underlying electronic states of the material it interacts with. The extreme case where light-matter interaction is so strong that this assumption fails has been coined the strong coupling regime. In this regime, new half-light, half-matter quasiparticles called polaritons emerge. In thin films of organic semiconductors--the same class of materials used in display technologies and low-cost solar cells--polaritons can readily form at room temperature. This Program will study collective quantum phenomena in the strong-coupling regime. It will focus on two distinct regimes, where fascinating physics occur. First, at high densities, polaritons can form a macroscopic quantum state termed a Bose-Einstein condensate. We will engineer a novel type of polariton condensate, based on open-shell molecules that will allow for magneto-optical effects to emerge. In addition, we will use lattices of polariton condensates to simulate a complex phenomenon known as many-body localization. This will allow us to gain further understanding of the barrier between quantum and classical physics. Second, at low densities, the emergence of strong light-matter coupling can modify molecular processes that occur within or between organic molecules. The extent to which these processes can be modified depends strongly on the number of molecules per optical mode in the system. We will investigate modifications of two processes directly relevant to increasing the efficiency of organic light-emitting diodes: reverse intersystem crossing and triplet-triplet annihilation. By engineering nanoscale optical cavities, we will reach a regime where the rates for these processes can be significantly enhanced. The findings from this Program will have direct applications in sensing, optoelectronics and our ability to simulate complex quantum systems. At completion, the Program will have trained 3 PhD, 2 MSc and 5 undergraduate students with a broad skill set in photonics, semiconductor science, quantum technologies and nanofabrication highly needed to support priority areas in Canada's technology industry.
光与物质的相互作用是我们熟悉的大多数光学现象的核心,如吸收、发射和散射。我们通常通过假设光不会显着改变与之相互作用的材料的基本电子态来处理这些问题。光-物质相互作用如此强烈以至于这个假设不成立的极端情况被称为强耦合机制。在这种情况下,新的半光、半物质的准粒子出现了,称为极化子。在有机半导体薄膜中--显示技术和低成本太阳能电池中使用的同一类材料--在室温下很容易形成极化子。这个项目将研究强耦合区域中的集体量子现象。它将聚焦于两个不同的体系,在这两个体系中发生了令人着迷的物理现象。首先,在高密度下,极化子可以形成一种被称为玻色-爱因斯坦凝聚体的宏观量子态。我们将设计一种新型的偏振子凝聚体,这种凝聚体基于开壳分子,可以产生磁光效应。此外,我们将使用极化子凝聚的晶格来模拟一种称为多体局域化的复杂现象。这将使我们进一步了解量子物理和经典物理之间的障碍。其次,在低密度下,强烈的光-物质耦合的出现可以改变发生在有机分子内部或之间的分子过程。这些过程可以被修改的程度很大程度上取决于系统中每个光学模式的分子数量。我们将研究与提高有机发光二极管效率直接相关的两种工艺的改进:反向系间交叉和三重态-三重态湮灭。通过设计纳米尺度的光学腔,我们将达到这样一种制度,在这种制度下,这些过程的速度可以显著提高。该计划的发现将直接应用于传感、光电子学和我们模拟复杂量子系统的能力。完成后,该计划将培养3名博士、2名硕士和5名本科生,他们拥有光子学、半导体科学、量子技术和纳米制造方面的广泛技能,这些技能是支持加拿大技术行业优先领域的迫切需要。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
KénaCohen, Stéphane其他文献
KénaCohen, Stéphane的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('KénaCohen, Stéphane', 18)}}的其他基金
Molecular Photonics in the Strong Coupling Regime
强耦合状态下的分子光子学
- 批准号:
RGPIN-2020-06566 - 财政年份:2021
- 资助金额:
$ 3.64万 - 项目类别:
Discovery Grants Program - Individual
Nanostructured and Molecular Photonics
纳米结构和分子光子学
- 批准号:
1000231166-2015 - 财政年份:2020
- 资助金额:
$ 3.64万 - 项目类别:
Canada Research Chairs
Molecular Photonics in the Strong Coupling Regime
强耦合状态下的分子光子学
- 批准号:
RGPIN-2020-06566 - 财政年份:2020
- 资助金额:
$ 3.64万 - 项目类别:
Discovery Grants Program - Individual
Towards tunable and scalable black phosphorus photodetectors
迈向可调谐和可扩展的黑磷光电探测器
- 批准号:
506808-2017 - 财政年份:2019
- 资助金额:
$ 3.64万 - 项目类别:
Strategic Projects - Group
Nanostructured and Molecular Photonics
纳米结构和分子光子学
- 批准号:
1000231166-2015 - 财政年份:2019
- 资助金额:
$ 3.64万 - 项目类别:
Canada Research Chairs
Passive microcavities for fast optical bistability
用于快速光学双稳态的无源微腔
- 批准号:
544136-2019 - 财政年份:2019
- 资助金额:
$ 3.64万 - 项目类别:
Engage Grants Program
Towards Quantum Organic Optoelectronics
迈向量子有机光电子学
- 批准号:
RGPIN-2014-06129 - 财政年份:2019
- 资助金额:
$ 3.64万 - 项目类别:
Discovery Grants Program - Individual
Nanostructured and Molecular Photonics
纳米结构和分子光子学
- 批准号:
1000231166-2015 - 财政年份:2018
- 资助金额:
$ 3.64万 - 项目类别:
Canada Research Chairs
相似海外基金
COMPAS: co integration of microelectronics and photonics for air and water sensors
COMPAS:微电子学和光子学的共同集成,用于空气和水传感器
- 批准号:
10108154 - 财政年份:2024
- 资助金额:
$ 3.64万 - 项目类别:
EU-Funded
Monolithic generation & detection of squeezed light in silicon nitride photonics (Mono-Squeeze)
单片一代
- 批准号:
EP/X016218/1 - 财政年份:2024
- 资助金额:
$ 3.64万 - 项目类别:
Research Grant
CAREER: Enabling New States of Light in Mid-Wave Infrared Photonics for Gas Sensing Applications
职业:在气体传感应用的中波红外光子学中实现新的光态
- 批准号:
2340060 - 财政年份:2024
- 资助金额:
$ 3.64万 - 项目类别:
Continuing Grant
Picometre Surface Nanoscale Axial Photonics (PicoSNAP)
皮米表面纳米级轴向光子学 (PicoSNAP)
- 批准号:
EP/X03772X/1 - 财政年份:2024
- 资助金额:
$ 3.64万 - 项目类别:
Research Grant
The platform to unleash the transformative potential of integrated photonics
释放集成光子学变革潜力的平台
- 批准号:
10087597 - 财政年份:2024
- 资助金额:
$ 3.64万 - 项目类别:
EU-Funded
Monolithic generation & detection of squeezed light in silicon nitride photonics (Mono-Squeeze)
单片一代
- 批准号:
EP/X016749/1 - 财政年份:2024
- 资助金额:
$ 3.64万 - 项目类别:
Research Grant
RII Track-4: NSF: Development of Semiconductor Lasers and Passive Devices on a Single Sapphire Platform for Integrated Microwave Photonics
RII Track-4:NSF:在单个蓝宝石平台上开发用于集成微波光子学的半导体激光器和无源器件
- 批准号:
2327229 - 财政年份:2024
- 资助金额:
$ 3.64万 - 项目类别:
Standard Grant
FMSG: Eco: Field Assisted Nano Assembly System (FANAS) for Next-Generation Photonics and Quantum Computing
FMSG:Eco:用于下一代光子学和量子计算的现场辅助纳米组装系统 (FANAS)
- 批准号:
2328096 - 财政年份:2024
- 资助金额:
$ 3.64万 - 项目类别:
Standard Grant