Structured Epitaxial Graphene and Semiconducting Graphene for Advanced Digital Electronics

用于先进数字电子的结构化外延石墨烯和半导体石墨烯

基本信息

  • 批准号:
    1506006
  • 负责人:
  • 金额:
    $ 40万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-09-01 至 2020-08-31
  • 项目状态:
    已结题

项目摘要

Graphene is a single sheet of carbon atoms arranged in a honeycomb structure and it spontaneously forms on silicon carbide (the same material used for household LED lighting). Research at the Georgia Institute of Technology has shown that this form of graphene can be used to make transistors, which are fundamental components of solid-state electronics. However, currently graphene transistors are limited to non-digital applications because of a fundamental physical property of graphene. The research proposed here overcomes this fundamental problem using innovative modifications of graphene, thereby enabling graphene transistors to be used in digital electronics. If the objectives of this proposal are successfully achieved then graphene may have a significant impact in the electronics industry by providing an alternative to the ubiquitous silicon-based electronics. Graphene-based electronics may be faster and more energy-efficient than silicon-based electronics, and they are therefore of significant importance for society. This research aims to develop digital graphene electronics on a silicon carbide platform. The key goals are to demonstrate:(1) high on-to-off ratios in field effect transistors(2) field effect transistor switching speeds that are comparable to or exceed those of silicon based transistors. (3) low power consumption.The scope of the research is presented below;For 5 decades, digital electronics has seen a relentless exponential growth in performance, but the growth will soon end, due to the physical limitations of silicon, on which the electronics industry almost exclusively relies. This "end of Moores law" scenario has been looming for some time, and no viable alternatives have been found. As first proposed by researchers at the Georgia Institute of Technology in 2003, graphene that is epitaxially grown on electronics grade silicon carbide is one of the most promising contenders to succeed silicon. This research aims to provide a proof of principle, by demonstrating that high-speeds and low power field effect transistors are feasible. The methods and approaches to be usedThis research builds on a decade of work at the Georgia Institute of Technology in the field of epitaxial graphene. In that time, high-speed transistors were demonstrated. Due to a lack of a bandgap in graphene, however, these transistors cannot be fully turned off and therefore they are not energy efficient. Recent research has found two ways to overcome this problem. One relies on the observation that a graphene layer grown on the silicon-terminated face of hexagonal silicon carbide is actually a semiconductor. If its mobility turns out to be sufficiently great, then it can be used for high performance digital electronics. The second method relies on the observation that charge carriers efficiently quantum mechanically tunnel over physical gaps in graphene ribbons. The tunneling current can be tuned using electrostatic gates to form ultra-thin body field effect tunneling transistors. In principle, this type of transistor is expected to operate at very high speed with low power consumption. The intellectual significance of the activityIf this research successfully achieves its ultimate goal, then it has the potential to revolutionize the electronics industry and to kick-off the long awaited "age of graphene electronics." Even if this lofty technological goal is not reached, then none-the-less, this research will represent a significant advance in graphene science.
石墨烯是排列成蜂窝结构的单片碳原子,在碳化硅(与家用 LED 照明所用的材料相同)上自发形成。佐治亚理工学院的研究表明,这种形式的石墨烯可用于制造晶体管,晶体管是固态电子器件的基本组件。然而,由于石墨烯的基本物理特性,目前石墨烯晶体管仅限于非数字应用。这里提出的研究利用石墨烯的创新修饰克服了这一基本问题,从而使石墨烯晶体管能够用于数字电子产品。如果该提案的目标成功实现,那么石墨烯可能会通过提供无处不在的硅基电子产品的替代品,对电子行业产生重大影响。基于石墨烯的电子产品可能比基于硅的电子产品更快、更节能,因此对社会具有重要意义。 这项研究旨在在碳化硅平台上开发数字石墨烯电子器件。主要目标是证明:(1) 场效应晶体管的高开关比(2) 场效应晶体管的开关速度可与硅基晶体管相媲美或超过硅基晶体管。 (3)低功耗。研究范围如下: 5年来,数字电子产品的性能一直呈指数级增长,但由于电子工业几乎完全依赖硅的物理限制,这种增长很快就会结束。这种“摩尔定律的终结”情景已经迫在眉睫一段时间了,而且还没有找到可行的替代方案。正如佐治亚理工学院的研究人员于 2003 年首次提出的那样,在电子级碳化硅上外延生长的石墨烯是最有希望取代硅的竞争者之一。这项研究旨在通过证明高速和低功率场效应晶体管的可行性来提供原理证明。 使用的方法和途径这项研究建立在佐治亚理工学院在外延石墨烯领域十年的工作基础上。那时,高速晶体管被展示出来。然而,由于石墨烯缺乏带隙,这些晶体管无法完全关闭,因此它们不节能。最近的研究发现了两种方法来克服这个问题。一种依赖于观察,即在六方碳化硅的硅端面上生长的石墨烯层实际上是半导体。如果其移动性足够大,那么它可以用于高性能数字电子产品。第二种方法依赖于电荷载流子有效地量子力学隧道穿过石墨烯带中的物理间隙的观察。可以使用静电栅极调节隧道电流以形成超薄体场效应隧道晶体管。原则上,这种类型的晶体管有望以非常高的速度和低功耗运行。 这项活动的智力意义如果这项研究成功实现其最终目标,那么它就有可能彻底改变电子行业,并开启期待已久的“石墨烯电子时代”。即使这一崇高的技术目标未能实现,但这项研究仍将代表石墨烯科学的重大进步。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Walter De Heer其他文献

Walter De Heer的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Walter De Heer', 18)}}的其他基金

The Emergence of Metallic Properties in Free Metal Clusters: Ground- and Metastable States
自由金属团簇中金属特性的出现:基态和亚稳态
  • 批准号:
    1308835
  • 财政年份:
    2013
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
The Emergence of Metallic Properties in Free Metal Clusters in a Molecular Beam
分子束中自由金属簇中金属性质的出现
  • 批准号:
    1006352
  • 财政年份:
    2010
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
Correlated Electron Effects in Small Clusters in Low Temperatures Molecular Beams
低温分子束中小团簇中的相关电子效应
  • 批准号:
    0605894
  • 财政年份:
    2006
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
MRI: Acquisition of Instrumentation for the Production and Characterization of Epitaxial Graphite on Silicon Carbide
MRI:购置用于碳化硅上外延石墨的生产和表征的仪器
  • 批准号:
    0521041
  • 财政年份:
    2005
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
NIRT: Electronic Devices from Nano-patterned Epitaxial Graphite
NIRT:纳米图案外延石墨电子设备
  • 批准号:
    0404084
  • 财政年份:
    2004
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Electron Pairing and Spin Dynamics in Metal Clusters at Low Temperatures in a Molecular Beam
低温分子束中金属团簇的电子配对和自旋动力学
  • 批准号:
    0307782
  • 财政年份:
    2003
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
In Situ Electron Microscopy Investigation of Physical Properties of Multiwalled Carbon Nanotubes
多壁碳纳米管物理性质的原位电子显微镜研究
  • 批准号:
    9971412
  • 财政年份:
    1999
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant

相似海外基金

Potential of Graphene as a Universal Substrate for Disruptive Epitaxial Devices
石墨烯作为破坏性外延器件通用基底的潜力
  • 批准号:
    RGPIN-2018-06091
  • 财政年份:
    2022
  • 资助金额:
    $ 40万
  • 项目类别:
    Discovery Grants Program - Individual
Potential of Graphene as a Universal Substrate for Disruptive Epitaxial Devices
石墨烯作为破坏性外延器件通用基底的潜力
  • 批准号:
    RGPIN-2018-06091
  • 财政年份:
    2021
  • 资助金额:
    $ 40万
  • 项目类别:
    Discovery Grants Program - Individual
Potential of Graphene as a Universal Substrate for Disruptive Epitaxial Devices
石墨烯作为破坏性外延器件通用基底的潜力
  • 批准号:
    RGPIN-2018-06091
  • 财政年份:
    2020
  • 资助金额:
    $ 40万
  • 项目类别:
    Discovery Grants Program - Individual
Potential of Graphene as a Universal Substrate for Disruptive Epitaxial Devices
石墨烯作为破坏性外延器件通用基底的潜力
  • 批准号:
    RGPIN-2018-06091
  • 财政年份:
    2019
  • 资助金额:
    $ 40万
  • 项目类别:
    Discovery Grants Program - Individual
Charge-transfer type graphene-FET biosensors using epitaxial graphene film.
使用外延石墨烯薄膜的电荷转移型石墨烯-FET 生物传感器。
  • 批准号:
    19H02582
  • 财政年份:
    2019
  • 资助金额:
    $ 40万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Potential of Graphene as a Universal Substrate for Disruptive Epitaxial Devices
石墨烯作为破坏性外延器件通用基底的潜力
  • 批准号:
    RGPIN-2018-06091
  • 财政年份:
    2018
  • 资助金额:
    $ 40万
  • 项目类别:
    Discovery Grants Program - Individual
Potential of Graphene as a Universal Substrate for Disruptive Epitaxial Devices
石墨烯作为破坏性外延器件通用基底的潜力
  • 批准号:
    DGECR-2018-00047
  • 财政年份:
    2018
  • 资助金额:
    $ 40万
  • 项目类别:
    Discovery Launch Supplement
Fabrication of quasi-free-standing epitaxial graphene to realize graphene-based devices
制造准自支撑外延石墨烯以实现基于石墨烯的器件
  • 批准号:
    17K19065
  • 财政年份:
    2017
  • 资助金额:
    $ 40万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Single Color Centers in Silicon Carbide: electro-optical access via epitaxial graphene
碳化硅中的单色中心:通过外延石墨烯进行电光访问
  • 批准号:
    337455822
  • 财政年份:
    2017
  • 资助金额:
    $ 40万
  • 项目类别:
    Research Grants
Innovative betterment of epitaxial graphene on Si substrate that accelerates realization of graphene electronics
硅衬底上外延石墨烯的创新改进加速了石墨烯电子器件的实现
  • 批准号:
    25286053
  • 财政年份:
    2013
  • 资助金额:
    $ 40万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了