Control and Design of Two Dimensional Silica Structures

二维二氧化硅结构的控制与设计

基本信息

  • 批准号:
    1506800
  • 负责人:
  • 金额:
    $ 47.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-09-01 至 2019-08-31
  • 项目状态:
    已结题

项目摘要

Non-Technical AbstractTwo-dimensional (2D) materials that can be thinned down to atomically thin sheets represent the ultimate in miniaturization while displaying unique physical and chemical properties. Varying how the atoms are arranged will allow further control of the physical and chemical properties, but has been difficult to achieve in a systematic way. With the recent discovery of a 2D form of silicon dioxide (SiO2), new possibilities for single sheet materials have arisen. The flexibility of the linkages between the SiO2 building blocks provides a pathway to realize atomic arrangements hypothesized for 2D materials, but thus far not realized in a controlled way. The ability to substitute a wide range of elements for Si in SiO2 networks further offers the opportunity to control chemical properties and induce new structures. This project integrates theory and experiment to develop rules for controlling how the SiO2 building blocks organize to form structures. The theory identifies combinations of dopants and growth conditions most likely to produce unique structures, while the experiments are directed towards realizing the materials and characterizing their local structural and chemical properties. With the support of the Solid State and Materials Chemistry program in the Division of Materials Research, the goals are to understand how the properties of the building blocks along with applied external stresses dictate the atomic arrangement of 2D materials, and thus their functional properties. Applications enabled by control of two-dimensional silicon dioxide structures include highly efficient, atomically thin membranes for separating molecules based on their size, controlled-thickness insulating layers for assembling electronic and optical devices by stacking different atomic sheets, and model catalysts. The results will be integrated into course material starting at the high school level where the graphical nature of images of the atomic structures provide an engaging introduction to the differences between crystals and glasses and the interrelationships between processing, structure, and properties. Technical AbstractThe recent discovery of 2D SiO2 bilayers created new possibilities for single sheet van der Waals materials. The open structure and high stability provides opportunities to design the ultimate membrane for molecular separations, while the flexibility of the network links can lead to a rich structural chemistry that may allow structures postulated for other tri-coordinated networks to be realized. First principles theory will be used to identify combinations of strain, dopant, dopant concentration, and coverage that provide a large energetic push away from the hexagonal six-membered ring structures favored for pure, unstrained 2D SiO2. The target structures will be synthesized using molecular beam epitaxy and characterized using scanning probe microscopy (SPM). Initial experiments will inform the level of theory needed to accurately model the system (e.g., the treatment of bilayer-substrate interactions), thereby providing a feedback mechanism to improve the predictive capabilities of the modeling. Scanning probe methods will be employed that combine tunneling and force measurements to yield the positions of surface Si, O, and dopant atoms and force and tunneling spectra above every atom. This extensive information together with theory will reveal how strain due to lattice mismatch and doping is relaxed, which in turn influences the chemical interactions of the bilayer with its surroundings. By combining theory with state-of-the-art SPM this project will yield a fundamental understanding of the roles played by network flexibility, strain, surface and interfacial tensions, and dopant properties in determining the diversity of 2D structures that can be achieved.
二维(2D)材料可以被减薄到原子级薄片,代表了微型化的终极,同时显示出独特的物理和化学性质。 改变原子的排列方式将允许进一步控制物理和化学性质,但很难以系统的方式实现。 随着最近发现的2D形式的二氧化硅(SiO2),出现了单片材料的新可能性。 SiO2结构单元之间的连接的灵活性提供了一种实现2D材料假设的原子排列的途径,但迄今为止还没有以受控的方式实现。 在SiO2网络中用各种元素取代Si的能力进一步提供了控制化学性质和诱导新结构的机会。 该项目将理论和实验相结合,以制定控制SiO2构建块如何组织形成结构的规则。 该理论确定了最有可能产生独特结构的掺杂剂和生长条件的组合,而实验则旨在实现材料并表征其局部结构和化学性质。 在材料研究部门的固态和材料化学计划的支持下,目标是了解构建块的特性沿着施加的外部应力如何决定2D材料的原子排列,从而决定其功能特性。 通过控制二维二氧化硅结构实现的应用包括用于基于分子大小分离分子的高效原子级薄膜、用于通过堆叠不同原子片组装电子和光学器件的受控厚度绝缘层以及模型催化剂。 结果将被整合到课程材料开始在高中水平的原子结构的图像的图形性质提供了一个迷人的介绍晶体和玻璃之间的差异和加工,结构和性能之间的相互关系。最近发现的2D SiO2双层为单层货车德瓦尔斯材料创造了新的可能性。开放结构和高稳定性提供了设计用于分子分离的最终膜的机会,而网络连接的灵活性可以导致丰富的结构化学,这可以允许实现为其他三配位网络假设的结构。第一原理理论将被用来确定应变,掺杂剂,掺杂剂浓度和覆盖范围的组合,提供了一个大的精力充沛的推动远离六方六元环结构有利于纯,无应变的2D二氧化硅。目标结构将使用分子束外延合成,并使用扫描探针显微镜(SPM)进行表征。 初始实验将告知精确建模系统所需的理论水平(例如,双层-衬底相互作用的处理),从而提供反馈机制以提高建模的预测能力。将采用扫描探针方法,结合联合收割机隧道和力的测量,以产生表面硅,O和掺杂剂原子的位置和力和隧道光谱以上的每个原子。 这些广泛的信息与理论将揭示由于晶格失配和掺杂导致的应变是如何放松的,这反过来又影响了双层与周围环境的化学相互作用。 通过将理论与最先进的SPM相结合,该项目将产生对网络灵活性,应变,表面和界面张力以及掺杂剂特性在确定可以实现的2D结构多样性中所起作用的基本理解。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Eric Altman其他文献

Eric Altman的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Eric Altman', 18)}}的其他基金

Tuning Surface Chemistry through Polarization
通过偏振调节表面化学
  • 批准号:
    1213751
  • 财政年份:
    2012
  • 资助金额:
    $ 47.5万
  • 项目类别:
    Standard Grant
Adsorption and Reaction at Ferroelectric Surfaces: Chemical Switches and Switchable Chemistry
铁电表面的吸附和反应:化学开关和可开关化学
  • 批准号:
    0809841
  • 财政年份:
    2008
  • 资助金额:
    $ 47.5万
  • 项目类别:
    Continuing Grant
Manipulating Surface Chemistry Via the Ferroelectric Effect
通过铁电效应操纵表面化学
  • 批准号:
    0413050
  • 财政年份:
    2004
  • 资助金额:
    $ 47.5万
  • 项目类别:
    Continuing Grant
Collaborative Research: Spin-electronic Dynamics in Three Terminal Couples Quantum Structures
合作研究:三端耦合量子结构中的自旋电子动力学
  • 批准号:
    0223817
  • 财政年份:
    2002
  • 资助金额:
    $ 47.5万
  • 项目类别:
    Continuing Grant
Acquisition of a Variable-Temperature Scanning Probe Microscope for Surface Science Research and Student Training
购买用于表面科学研究和学生培训的变温扫描探针显微镜
  • 批准号:
    0075824
  • 财政年份:
    2000
  • 资助金额:
    $ 47.5万
  • 项目类别:
    Standard Grant
PECASE: Mechanisms of Surfactant Mediated Thin Film Growth
PECASE:表面活性剂介导的薄膜生长机制
  • 批准号:
    9733416
  • 财政年份:
    1998
  • 资助金额:
    $ 47.5万
  • 项目类别:
    Continuing Grant
ENGINEERING RESEARCH EQUIPMENT: Surface Analysis Equipment for High-speed Variable-Temperature Ultrahigh-Vacuum Scanning Tunnelling Microscopy
工程研究设备:高速变温超高真空扫描隧道显微镜表面分析设备
  • 批准号:
    9411568
  • 财政年份:
    1994
  • 资助金额:
    $ 47.5万
  • 项目类别:
    Standard Grant
Atomic-Scale Mechanism of Metal Etching Reactions Determined by High-Speed Variable-Temperature Scanning Tunneling Microscopy
通过高速变温扫描隧道显微镜确定金属蚀刻反应的原子尺度机制
  • 批准号:
    9414404
  • 财政年份:
    1994
  • 资助金额:
    $ 47.5万
  • 项目类别:
    Continuing Grant

相似国自然基金

Applications of AI in Market Design
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国青年学者研 究基金项目
基于“Design-Build-Test”循环策略的新型紫色杆菌素组合生物合成研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
在噪声和约束条件下的unitary design的理论研究
  • 批准号:
    12147123
  • 批准年份:
    2021
  • 资助金额:
    18 万元
  • 项目类别:
    专项基金项目

相似海外基金

Two-way shape-memory polymer design based on periodic dynamic crosslinks inducing supramolecular nanostructures
基于周期性动态交联诱导超分子纳米结构的双向形状记忆聚合物设计
  • 批准号:
    2342272
  • 财政年份:
    2024
  • 资助金额:
    $ 47.5万
  • 项目类别:
    Standard Grant
CAS: Design and Mechanistic Understanding of Emerging Metal Chalcogenide Electrocatalysts for Selective Two-Electron Oxygen Reduction
CAS:用于选择性双电子氧还原的新兴金属硫属化物电催化剂的设计和机理理解
  • 批准号:
    2247519
  • 财政年份:
    2023
  • 资助金额:
    $ 47.5万
  • 项目类别:
    Continuing Grant
Molecular design of Two-Way Player CAR-T cells to overcome disease/antigen heterogeneity of childhood, adolescent, and young adult cancers
双向 CAR-T 细胞的分子设计,以克服儿童、青少年和年轻成人癌症的疾病/抗原异质性
  • 批准号:
    23H02874
  • 财政年份:
    2023
  • 资助金额:
    $ 47.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Deliberate Design and Synthesis of Thionated Organic Photosensitizers Activated by One- and Two-Photon Absorption in the Near-Infrared
近红外一光子和二光子吸收激活的硫代有机光敏剂的精心设计与合成
  • 批准号:
    2246805
  • 财政年份:
    2023
  • 资助金额:
    $ 47.5万
  • 项目类别:
    Standard Grant
Mechanism and design of footing with two-way eccentricity of column and pile
柱桩双向偏心基础机理及设计
  • 批准号:
    23K04130
  • 财政年份:
    2023
  • 资助金额:
    $ 47.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
CAREER: Quantum defects in two-dimensional materials by local-symmetry-guided data-driven design
职业:通过局域对称引导的数据驱动设计研究二维材料中的量子缺陷
  • 批准号:
    2314050
  • 财政年份:
    2023
  • 资助金额:
    $ 47.5万
  • 项目类别:
    Continuing Grant
Development of Ultrafast Cavity-Enhanced Two-Dimensional Spectroscopy for Coherent Control Experimental Design
用于相干控制实验设计的超快腔增强二维光谱学的发展
  • 批准号:
    2207784
  • 财政年份:
    2022
  • 资助金额:
    $ 47.5万
  • 项目类别:
    Standard Grant
CAREER: Rational Design of One-Dimensional Contacts to Two-Dimensional Atomically Thin Heterostructure for High-Performance and Low Noise Field Effect Transistors and Biosensors
职业:一维接触到二维原子薄异质结构的合理设计,用于高性能和低噪声场效应晶体管和生物传感器
  • 批准号:
    2145962
  • 财政年份:
    2022
  • 资助金额:
    $ 47.5万
  • 项目类别:
    Continuing Grant
Simulation of surfactant-laden two-phase flow through porous materials for design of coalescer
模拟载有表面活性剂的两相流穿过多孔材料以设计聚结器
  • 批准号:
    22K04803
  • 财政年份:
    2022
  • 资助金额:
    $ 47.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
CAREER: Quantum defects in two-dimensional materials by local-symmetry-guided data-driven design
职业:通过局域对称引导的数据驱动设计研究二维材料中的量子缺陷
  • 批准号:
    2144936
  • 财政年份:
    2022
  • 资助金额:
    $ 47.5万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了