Chiral Plasmonics at the Single Nanoparticle and Single Molecule Level
单纳米颗粒和单分子水平的手性等离子体
基本信息
- 批准号:1507745
- 负责人:
- 金额:$ 42.81万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-07-15 至 2019-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
With this award, the Macromolecular, Supramolecular and Nanochemistry Program in the Chemistry Division is funding Professor Stephen Link of William March Rice University to study chiral plasmonics on the single nanoparticle and potentially single molecule scale. Chiral objects cannot be overlaid with their mirror image. An everyday example of this is human hands- a right handed glove doesn't fit on the left hand. Therefore, the chirality of an object is sometimes termed its handedness. Many important molecules are chiral, including drugs, proteins, and DNA. In the case of pharmaceuticals, the chirality of the drug is absolutely essential to its function. Molecular chirality is measured by circular dichroism (CD) spectroscopy. Stephan Link, at Rice University, is developing novel highly sensitive methods to measure the chirality of single molecules. The applications of this work include biomedical research, the pharmaceutical industry, and chemical synthesis and catalysis. The excitement about scientific research and discovery in nanotechnology is communicated through outreach activities such as Rice University's Civic Scientist Program to K-12 students to inspire them to pursue careers in science-related fields. The objectives of this proposal are to be accomplished using unique spectroscopic methods capable of recording CD spectra of single plasmonic nanoparticles and super-resolution imaging single molecules, in combination with electron microscopy and electromagnetic simulations. The relationship between CD signal enhancement and nanostructure composition and morphology (size, shape, interparticle coupling) and the intrinsically linked plasmon modes (bright, dark) is possible with the proposed studies. This information cannot be obtained in ensemble measurements, especially for strongly coupled nanoparticles prepared by chemical synthesis. The outcomes of these studies are expected have wide scientific impact in areas ranging from the development of chiral sensing platforms, and of chiral catalysts to the basis of plasmon-exciton coupling. Concepts from multiple disciplines are included in this research, forming a platform for a broad educational program specifically designed for high school, undergraduate, and graduate students. Exciting vignettes related to scientific research and discovery in nanotechnology are to be communicated to K-12 students through outreach activities, such as Rice University's Civic Scientist Program, to expose these students to the potential for creative advancement via careers in STEM-related fields.
凭借这一奖项,化学系的大分子、超分子和纳米化学计划将资助威廉·马奇·赖斯大学的斯蒂芬·林克教授在单纳米颗粒和潜在的单分子尺度上研究手性等离子体。手性对象不能与其镜像重叠。这方面的一个日常例子是人的手--右手手套不适合左手。因此,一个物体的手性有时被称为它的手性。许多重要的分子都是手性的,包括药物、蛋白质和DNA。就药物而言,药物的手性对其功能是绝对必要的。用圆二色谱(CD)测量了分子手性。莱斯大学的斯蒂芬·林克正在开发新的高度灵敏的方法来测量单分子的手性。这项工作的应用包括生物医学研究,制药工业,以及化学合成和催化。通过莱斯大学公民科学家计划等外联活动,向K-12年级的学生传达对纳米技术科学研究和发现的兴奋,以激励他们在与科学相关的领域追求职业生涯。这项提议的目标是使用独特的光谱方法,结合电子显微镜和电磁模拟,能够记录单个等离子体纳米粒子的CD光谱和超分辨率成像单分子。通过所提出的研究,CD信号增强与纳米结构组成和形态(尺寸、形状、颗粒间耦合)以及内在联系的等离子体激元模式(亮、暗)之间的关系是可能的。这种信息不能在系综测量中获得,特别是对于通过化学合成制备的强耦合纳米颗粒。这些研究的结果有望在手性传感平台和手性催化剂的开发以及等离子体激子-激子耦合的基础上产生广泛的科学影响。来自多个学科的概念被纳入这项研究,形成了一个专门为高中、本科生和研究生设计的广泛教育计划的平台。与纳米技术的科学研究和发现相关的激动人心的小插曲将通过外联活动(如莱斯大学的公民科学家计划)传达给K-12学生,使这些学生通过在STEM相关领域的职业生涯获得创造性进步的潜力。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Stephan Link其他文献
Plasmonic colour generation
等离子体激元颜色生成
- DOI:
10.1038/natrevmats.2016.88 - 发表时间:
2016-11-22 - 期刊:
- 影响因子:86.200
- 作者:
Anders Kristensen;Joel K. W. Yang;Sergey I. Bozhevolnyi;Stephan Link;Peter Nordlander;Naomi J. Halas;N. Asger Mortensen - 通讯作者:
N. Asger Mortensen
Bottom-up carbon dots: purification, single-particle dynamics, and electronic structure
自下而上的碳点:纯化、单粒子动力学和电子结构
- DOI:
10.1039/d4sc05843g - 发表时间:
2025-01-30 - 期刊:
- 影响因子:7.400
- 作者:
Zhengyi Bian;Eric Gomez;Martin Gruebele;Benjamin G. Levine;Stephan Link;Arshad Mehmood;Shuming Nie - 通讯作者:
Shuming Nie
Nano-optics from sensing to waveguiding
从传感到波导的纳米光学
- DOI:
10.1038/nphoton.2007.223 - 发表时间:
2007-11-01 - 期刊:
- 影响因子:32.900
- 作者:
Surbhi Lal;Stephan Link;Naomi J. Halas - 通讯作者:
Naomi J. Halas
Early-Career and Emerging Researchers in Physical Chemistry Volume 2.
物理化学领域的早期职业和新兴研究人员第 2 卷。
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:3.3
- 作者:
A. Alexandrova;J. Biteen;S. Coriani;F. Geiger;A. Gewirth;G. Goward;Hua Guo;Libai Huang;Jianfeng Li;T. Liedl;Stephan Link;Zhi;S. Maiti;A. Orr;David L Osborn;J. Pfaendtner;Benoı T Roux;Friederike Schmid;J. R. Schmidt;William F. Schneider;L. Slipchenko;G. Solomon;J. V. van Bokhoven;V. Van Speybroeck;Shen Ye;T. D. Crawford;M. Zanni;G. Hartland;J. Shea - 通讯作者:
J. Shea
Stephan Link的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Stephan Link', 18)}}的其他基金
Collaborative Research: Workshop: Challenges and Prospects for the Next 10 Years of Nanochemistry
合作研究:研讨会:纳米化学未来十年的挑战与前景
- 批准号:
2316670 - 财政年份:2023
- 资助金额:
$ 42.81万 - 项目类别:
Standard Grant
Direct Interfacial Charge Separation in Plasmonic Heterostructures Revealed by Single-Particle Spectroscopy
单粒子光谱揭示等离激元异质结构中的直接界面电荷分离
- 批准号:
2225592 - 财政年份:2022
- 资助金额:
$ 42.81万 - 项目类别:
Standard Grant
COLLABORATIVE RESEARCH: DMREF: Designing Plasmonic Nanoparticle Assemblies For Active Nanoscale Temperature Control By Exploiting Near- And Far-Field Coupling
合作研究:DMREF:通过利用近场和远场耦合设计用于主动纳米级温度控制的等离激元纳米颗粒组件
- 批准号:
2118420 - 财政年份:2021
- 资助金额:
$ 42.81万 - 项目类别:
Standard Grant
Nanoscale Polarization Control for Single Molecule Detection: Circular and Trochoidal Dichroism
用于单分子检测的纳米级偏振控制:圆和摆线二色性
- 批准号:
1903980 - 财政年份:2019
- 资助金额:
$ 42.81万 - 项目类别:
Standard Grant
DMREF: Collaborative Research: Nanoscale Temperature Manipulation via Plasmonic Fano Interferences
DMREF:协作研究:通过等离子体 Fano 干扰进行纳米级温度操纵
- 批准号:
1727122 - 财政年份:2017
- 资助金额:
$ 42.81万 - 项目类别:
Standard Grant
OP: Ultrafast and Optomechanical Properties of Individual Plasmonic Antennas
OP:单个等离子体天线的超快和光机械特性
- 批准号:
1608917 - 财政年份:2016
- 资助金额:
$ 42.81万 - 项目类别:
Standard Grant
Probing Dynamics and Structure of the Nanoparticle Protein Corona to Understand Its Impacts on Environmental Health and Safety
探测纳米颗粒蛋白电晕的动力学和结构,以了解其对环境健康和安全的影响
- 批准号:
1438634 - 财政年份:2014
- 资助金额:
$ 42.81万 - 项目类别:
Standard Grant
CAREER: Novel Plasmonic Properties of Individual Nanoparticle Chains Investigated by Correlated Structural Imaging and Single Particle Spectroscopy
职业:通过相关结构成像和单粒子光谱研究单个纳米粒子链的新颖等离子体特性
- 批准号:
0955286 - 财政年份:2010
- 资助金额:
$ 42.81万 - 项目类别:
Continuing Grant
相似海外基金
Study of Plasmonics in Hybrid Nanostructures
混合纳米结构中的等离激元研究
- 批准号:
RGPIN-2018-05646 - 财政年份:2022
- 资助金额:
$ 42.81万 - 项目类别:
Discovery Grants Program - Individual
New Frontiers in Ultrafast High-Field Plasmonics, Nonlinear Nanoplasmonics, Plasmoelectronics, and THz Spinplasmonics
超快高场等离子体激元、非线性纳米等离子体激元、等离子体电子学和太赫兹自旋等离子体激元的新前沿
- 批准号:
RGPIN-2020-03999 - 财政年份:2022
- 资助金额:
$ 42.81万 - 项目类别:
Discovery Grants Program - Individual
New perspectives in photocatalysis and near-surface chemistry: catalysis meets plasmonics
光催化和近表面化学的新视角:催化遇上等离子体激元
- 批准号:
EP/W017075/1 - 财政年份:2022
- 资助金额:
$ 42.81万 - 项目类别:
Research Grant
Advanced Topological materials for Plasmonics
用于等离子体激元的先进拓扑材料
- 批准号:
2751065 - 财政年份:2022
- 资助金额:
$ 42.81万 - 项目类别:
Studentship
FUNDAMENTALS AND APPLICATIONS OF PLASMONICS AND ULTRAFAST LASERS IN THERANOSTIC NANOMEDECINE
等离激元和超快激光在治疗纳米医学中的基础知识和应用
- 批准号:
RGPIN-2018-05288 - 财政年份:2022
- 资助金额:
$ 42.81万 - 项目类别:
Discovery Grants Program - Individual
Ultrasensitive biosensor based on mechanically tunable chiral plasmonics
基于机械可调手性等离子体的超灵敏生物传感器
- 批准号:
22H03685 - 财政年份:2022
- 资助金额:
$ 42.81万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Light-Directed Synthesis of Metal Nanocrystal Dimers for Scalable Precision Plasmonics
用于可扩展精密等离子体激元的金属纳米晶体二聚体的光引导合成
- 批准号:
2109067 - 财政年份:2021
- 资助金额:
$ 42.81万 - 项目类别:
Standard Grant
New Frontiers in Ultrafast High-Field Plasmonics, Nonlinear Nanoplasmonics, Plasmoelectronics, and THz Spinplasmonics
超快高场等离子体激元、非线性纳米等离子体激元、等离子体电子学和太赫兹自旋等离子体激元的新前沿
- 批准号:
RGPIN-2020-03999 - 财政年份:2021
- 资助金额:
$ 42.81万 - 项目类别:
Discovery Grants Program - Individual
Study of Plasmonics in Hybrid Nanostructures
混合纳米结构中的等离激元研究
- 批准号:
RGPIN-2018-05646 - 财政年份:2021
- 资助金额:
$ 42.81万 - 项目类别:
Discovery Grants Program - Individual
FUNDAMENTALS AND APPLICATIONS OF PLASMONICS AND ULTRAFAST LASERS IN THERANOSTIC NANOMEDECINE
等离激元和超快激光在治疗纳米医学中的基础知识和应用
- 批准号:
RGPIN-2018-05288 - 财政年份:2021
- 资助金额:
$ 42.81万 - 项目类别:
Discovery Grants Program - Individual