OP: Ultrafast and Optomechanical Properties of Individual Plasmonic Antennas

OP:单个等离子体天线的超快和光机械特性

基本信息

  • 批准号:
    1608917
  • 负责人:
  • 金额:
    $ 37万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-06-01 至 2020-05-31
  • 项目状态:
    已结题

项目摘要

Title: Understanding the energy relaxation pathways in optical antennas made from assemblies of metal nanoparticlesNon-Technical DescriptionMetal nanoparticles support the collective motion of their conduction band electrons in response to incident light, an effect known as a surface plasmon resonance. When those nanoparticles approach each other to within distances of less than their diameters, the surface plasmons start to couple just like connected harmonic oscillators, making it possible to engineer the overall optical response and design antennas that operate in the visible frequency range in complete analogy to radio frequency receivers and transmitters. The difference to radio antennas is that the dimensions are reduced to tens of nanometers (10-9 meter). While this concept of plasmon coupling and its use to receive and transmit radiation is fairly well understood, our understanding of heating losses (i.e. Ohmic resistance), which always occur in metals and are even more important in nanoparticles interacting with visible light, is limited for assemblies of nanoparticles with specifically designed plasmon resonances. This project aims to address this question and to provide detailed insight into how the overall geometry of the nanoparticle antenna affects the energy relaxation of absorbed photons that eventually produce heat by directly following the fate of the excitation energy with very short laser pulses. The knowledge gained through this work will make it possible to potentially minimize heating losses, but also and more importantly exploit the dependence of the energy relaxation dynamics on the antenna geometry to design fast opto-electronic switches and modulators.Technical DescriptionThe goal of this proposal is to determine the effect of the geometry of antennas made from different arrangements of metal nanoparticles that have various sizes and shapes on the electron-phonon coupling and acoustic vibrations. Specifically, the proposed project will address the following two objectives: (1) Establish the dependence of electronic energy relaxation on the nanoparticle antenna geometry and the type of the excited surface plasmon mode; and, (2) Investigate the mechanism for the excitation and damping of acoustic vibrations of strongly coupled nanoparticle antennas. To accomplish these goals, electron microscopy will be combined with single-particle transient extinction spectroscopy employing wavelength tunable pulses to investigate the same individual nanoparticle antennas. Single-particle spectroscopy techniques are necessary to correlate the optical and structural properties of individual nanoparticles antennas having different geometries because especially the damping of the acoustic vibrations is otherwise determined by extrinsic factors, i.e. nanoparticle size polydispersity. It is expected that the outcomes of the proposed studies will yield a detailed insight into how the structural parameters of a nanoparticle antenna, including the surrounding medium, can be engineered to optimize desired electron-phonon relaxation times and how impulsively launched acoustic vibrations can be exploited to modulate the optical signal from the antenna itself as well as quantum emitters located in the antenna gaps. These research efforts will lead to important contributions toward understanding the relationship between the ultrafast energy relaxation dynamics and the structure dependent collective plasmon modes in nanoparticle antennas.
标题:了解由金属纳米颗粒组装而成的光学天线中的能量弛豫路径非技术描述金属纳米颗粒支持其导带电子在入射光下的集体运动,这种效应被称为表面等离子体共振。当这些纳米粒子相互靠近,距离小于它们的直径时,表面等离子体就会开始耦合,就像相连的谐振子一样,这使得设计整体光学响应和设计工作在可见频率范围内的天线成为可能,完全类似于射频接收器和发射器。与无线电天线的不同之处在于,尺寸缩小到几十纳米(10-9米)。虽然等离子激元耦合的概念及其用来接收和发射辐射的概念已经被很好地理解,但我们对热损失(即欧姆电阻)的理解仅限于具有特殊设计的等离子激元共振的纳米粒子的组装。该项目旨在解决这一问题,并详细了解纳米粒子天线的总体几何形状如何影响被吸收光子的能量弛豫,这些光子最终通过用非常短的激光脉冲直接跟随激发能量的命运而产生热量。通过这项工作获得的知识将使潜在地最小化热损失成为可能,而且更重要的是利用能量松弛动力学对天线几何形状的依赖来设计快速的光电开关和调制器。技术描述这项提议的目标是确定由不同尺寸和形状的金属纳米粒子组成的不同排列的天线的几何形状对电子-声子耦合和声振动的影响。具体地说,该项目将解决以下两个目标:(1)建立电子能量弛豫对纳米粒子天线几何形状和激发表面等离子体激元模式的依赖关系;(2)研究强耦合纳米粒子天线的声振动的激发和衰减机制。为了实现这些目标,电子显微镜将与使用波长可调脉冲的单粒子瞬时消光光谱相结合来研究相同的单个纳米粒子天线。单粒子光谱技术对于关联具有不同几何形状的单个纳米粒子天线的光学和结构特性是必要的,因为特别是声振动的衰减是由外部因素决定的,即纳米粒子的尺寸多分散性。预计拟议研究的结果将对如何设计纳米颗粒天线的结构参数,包括周围介质,以优化所需的电子-声子弛豫时间,以及如何利用脉冲发射的声振动来调制来自天线本身以及位于天线缝隙中的量子发射器的光信号产生详细的见解。这些研究工作将为理解纳米粒子天线中的超快能量弛豫动力学与结构相关的集体等离子体激元之间的关系做出重要贡献。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Increased Intraband Transitions in Smaller Gold Nanorods Enhance Light Emission
  • DOI:
    10.1021/acsnano.0c06771
  • 发表时间:
    2020-11-24
  • 期刊:
  • 影响因子:
    17.1
  • 作者:
    Ostovar, Behnaz;Cai, Yi-Yu;Link, Stephan
  • 通讯作者:
    Link, Stephan
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Stephan Link其他文献

Plasmonic colour generation
等离子体激元颜色生成
  • DOI:
    10.1038/natrevmats.2016.88
  • 发表时间:
    2016-11-22
  • 期刊:
  • 影响因子:
    86.200
  • 作者:
    Anders Kristensen;Joel K. W. Yang;Sergey I. Bozhevolnyi;Stephan Link;Peter Nordlander;Naomi J. Halas;N. Asger Mortensen
  • 通讯作者:
    N. Asger Mortensen
Bottom-up carbon dots: purification, single-particle dynamics, and electronic structure
自下而上的碳点:纯化、单粒子动力学和电子结构
  • DOI:
    10.1039/d4sc05843g
  • 发表时间:
    2025-01-30
  • 期刊:
  • 影响因子:
    7.400
  • 作者:
    Zhengyi Bian;Eric Gomez;Martin Gruebele;Benjamin G. Levine;Stephan Link;Arshad Mehmood;Shuming Nie
  • 通讯作者:
    Shuming Nie
Nano-optics from sensing to waveguiding
从传感到波导的纳米光学
  • DOI:
    10.1038/nphoton.2007.223
  • 发表时间:
    2007-11-01
  • 期刊:
  • 影响因子:
    32.900
  • 作者:
    Surbhi Lal;Stephan Link;Naomi J. Halas
  • 通讯作者:
    Naomi J. Halas
Early-Career and Emerging Researchers in Physical Chemistry Volume 2.
物理化学领域的早期职业和新兴研究人员第 2 卷。
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    A. Alexandrova;J. Biteen;S. Coriani;F. Geiger;A. Gewirth;G. Goward;Hua Guo;Libai Huang;Jianfeng Li;T. Liedl;Stephan Link;Zhi;S. Maiti;A. Orr;David L Osborn;J. Pfaendtner;Benoı T Roux;Friederike Schmid;J. R. Schmidt;William F. Schneider;L. Slipchenko;G. Solomon;J. V. van Bokhoven;V. Van Speybroeck;Shen Ye;T. D. Crawford;M. Zanni;G. Hartland;J. Shea
  • 通讯作者:
    J. Shea

Stephan Link的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Stephan Link', 18)}}的其他基金

Collaborative Research: Workshop: Challenges and Prospects for the Next 10 Years of Nanochemistry
合作研究:研讨会:纳米化学未来十年的挑战与前景
  • 批准号:
    2316670
  • 财政年份:
    2023
  • 资助金额:
    $ 37万
  • 项目类别:
    Standard Grant
Direct Interfacial Charge Separation in Plasmonic Heterostructures Revealed by Single-Particle Spectroscopy
单粒子光谱揭示等离激元异质结构中的直接界面电荷分离
  • 批准号:
    2225592
  • 财政年份:
    2022
  • 资助金额:
    $ 37万
  • 项目类别:
    Standard Grant
COLLABORATIVE RESEARCH: DMREF: Designing Plasmonic Nanoparticle Assemblies For Active Nanoscale Temperature Control By Exploiting Near- And Far-Field Coupling
合作研究:DMREF:通过利用近场和远场耦合设计用于主动纳米级温度控制的等离激元纳米颗粒组件
  • 批准号:
    2118420
  • 财政年份:
    2021
  • 资助金额:
    $ 37万
  • 项目类别:
    Standard Grant
Nanoscale Polarization Control for Single Molecule Detection: Circular and Trochoidal Dichroism
用于单分子检测的纳米级偏振控制:圆和摆线二色性
  • 批准号:
    1903980
  • 财政年份:
    2019
  • 资助金额:
    $ 37万
  • 项目类别:
    Standard Grant
DMREF: Collaborative Research: Nanoscale Temperature Manipulation via Plasmonic Fano Interferences
DMREF:协作研究:通过等离子体 Fano 干扰进行纳米级温度操纵
  • 批准号:
    1727122
  • 财政年份:
    2017
  • 资助金额:
    $ 37万
  • 项目类别:
    Standard Grant
Chiral Plasmonics at the Single Nanoparticle and Single Molecule Level
单纳米颗粒和单分子水平的手性等离子体
  • 批准号:
    1507745
  • 财政年份:
    2015
  • 资助金额:
    $ 37万
  • 项目类别:
    Standard Grant
Probing Dynamics and Structure of the Nanoparticle Protein Corona to Understand Its Impacts on Environmental Health and Safety
探测纳米颗粒蛋白电晕的动力学和结构,以了解其对环境健康和安全的影响
  • 批准号:
    1438634
  • 财政年份:
    2014
  • 资助金额:
    $ 37万
  • 项目类别:
    Standard Grant
CAREER: Novel Plasmonic Properties of Individual Nanoparticle Chains Investigated by Correlated Structural Imaging and Single Particle Spectroscopy
职业:通过相关结构成像和单粒子光谱研究单个纳米粒子链的新颖等离子体特性
  • 批准号:
    0955286
  • 财政年份:
    2010
  • 资助金额:
    $ 37万
  • 项目类别:
    Continuing Grant

相似国自然基金

基于Ultrafast-VPCR技术的半夏药材及其成药快速基因检测体系的建立以及应用
  • 批准号:
    81973434
  • 批准年份:
    2019
  • 资助金额:
    54.0 万元
  • 项目类别:
    面上项目

相似海外基金

Ultrafast tracking of physiological processes in the human eye
超快速跟踪人眼的生理过程
  • 批准号:
    DP240103352
  • 财政年份:
    2024
  • 资助金额:
    $ 37万
  • 项目类别:
    Discovery Projects
Freeform Silica Fibre Optics via Ultrafast Laser Manufacturing
通过超快激光制造的自由形状石英光纤
  • 批准号:
    MR/X034615/1
  • 财政年份:
    2024
  • 资助金额:
    $ 37万
  • 项目类别:
    Fellowship
CAREER: Integrated Lithium Niobate Femtosecond Mode-Locked Lasers and Ultrafast Photonic Systems
职业:集成铌酸锂飞秒锁模激光器和超快光子系统
  • 批准号:
    2338798
  • 财政年份:
    2024
  • 资助金额:
    $ 37万
  • 项目类别:
    Continuing Grant
CAREER: Photo-induced Ultrafast Electron-nuclear Dynamics in Molecules
职业:分子中光致超快电子核动力学
  • 批准号:
    2340570
  • 财政年份:
    2024
  • 资助金额:
    $ 37万
  • 项目类别:
    Continuing Grant
Ultrafast Infrared Spectroscopy Facility
超快红外光谱设备
  • 批准号:
    LE240100004
  • 财政年份:
    2024
  • 资助金额:
    $ 37万
  • 项目类别:
    Linkage Infrastructure, Equipment and Facilities
RII Track-4:NSF: Understanding Perovskite Solar Cell Passivation at The Level of Organic Functional Groups through Ultrafast Spectroscopy
RII Track-4:NSF:通过超快光谱了解有机官能团水平的钙钛矿太阳能电池钝化
  • 批准号:
    2326788
  • 财政年份:
    2024
  • 资助金额:
    $ 37万
  • 项目类别:
    Standard Grant
Time-resolved sImulations of ultrafast phenoMena in quantum matErialS (TIMES)
量子材料中超快现象的时间分辨模拟 (TIMES)
  • 批准号:
    EP/Y032659/1
  • 财政年份:
    2024
  • 资助金额:
    $ 37万
  • 项目类别:
    Research Grant
RII Track-4:NSF: Ultrafast Gripping and Release Mechanisms in Slingshot Spider Legs
RII Track-4:NSF:弹弓蜘蛛腿中的超快抓取和释放机制
  • 批准号:
    2327439
  • 财政年份:
    2024
  • 资助金额:
    $ 37万
  • 项目类别:
    Standard Grant
THz frequency structures for particle accelerators: Realising ultrafast electron beam manipulation and diagnostics
粒子加速器的太赫兹频率结构:实现超快电子束操纵和诊断
  • 批准号:
    ST/Y510002/1
  • 财政年份:
    2024
  • 资助金额:
    $ 37万
  • 项目类别:
    Research Grant
ultrafast MRIによる乳癌微小環境サブタイプ分類の診断基準の確立
超快MRI乳腺癌微环境亚型分类诊断标准的建立
  • 批准号:
    23K07112
  • 财政年份:
    2023
  • 资助金额:
    $ 37万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了