Nanoscale Polarization Control for Single Molecule Detection: Circular and Trochoidal Dichroism
用于单分子检测的纳米级偏振控制:圆和摆线二色性
基本信息
- 批准号:1903980
- 负责人:
- 金额:$ 55.03万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-06-15 至 2024-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
An object is chiral when it cannot be superimposed on its mirror image. Our left and right hands are non-superimposable and are therefore chiral objects. Chirality exists throughout nature. The twist of a DNA helix gives it a specific handedness, determined by the twist direction. Light waves can be made to spiral as they travel through space. This special form of light -- called circularly polarized light -- has a specific handedness depending on whether the twist is clock-wise or counter clock-wise. Circularly polarized light interacts more favorably with chiral objects when their handedness match. Chiral molecules therefore either absorb more left-handed or right-handed circularly polarized light. The difference is known as circular dichroism, which gives important insights into the handedness and geometry of molecules. However, the circular dichroism signal is usually weak. With support from the Macromolecular, Supramolecular and Nanochemistry and Chemical Measurement and Imaging programs in the Division of Chemistry, Professor Stephan Link from Rice University is studying individual proteins placed in the gap between two metal nanoparticles, which concentrate the light and amplify the circular dichroism signal. Working with his students, Professor Link is applying advanced assembly methods to control the protein placement and using sophisticated spectroscopies to study the underlying enhancement mechanism, which is still poorly understood. Their discoveries could have far-reaching applicability to understanding neurodegenerative diseases, such as Alzheimer's and Parkinson's. In addition, the project incorporates concepts from multiple disciplines forming an attractive training platform for post-doctoral researchers, graduate, undergraduate, and high school students. To exploit defined nanoscale assembly and electric field manipulation for the detection of single chiral molecules and their structural dynamics, the Link lab is applying DNA origami methods for precise control over nanoscale geometry in combination with unique spectroscopic capabilities developed for determining the circular dichroism signals of single molecular-plasmonic complexes. Electromagnetic simulations and electron microscopy aid in the distinction between optical activity arising from the plasmonic nanostructure itself vs. the chiral molecule of interest. These studies are advancing the mechanistic understanding about plasmon-coupled circular dichroism and allow one to create substrates for sensing molecular structure of a single protein using circular dichroism. The project is also studying trochoidal dichroism using surface confined waves created by total internal reflection. Trochoidal fields have electric components along the propagation direction of light and only exist at an interface. The Link lab is exploring which nanostructure and molecular geometries are sensitive specifically to trochoidal fields when the handedness of the cartwheeling motion of such fields is switched. Professor Link is also participating in Rice University's Civic Scientist Program, allowing him to educate K-12 students about nanotechnology and inspire them to pursue scientific careers.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
当一个物体不能叠加在它的镜像上时,它就是手性的。 我们的左手和右手是不可重叠的,因此是手征对象。手性存在于整个自然界。DNA螺旋的扭曲赋予它特定的旋向,由扭曲方向决定。光波在空间中传播时可以做成螺旋形。这种特殊形式的光--称为圆偏振光--具有特定的旋向,这取决于扭曲是顺时针还是逆时针。 当手性匹配时,圆偏振光与手性物体的相互作用更有利。因此,手性分子要么吸收更多的左旋圆偏振光,要么吸收更多的右旋圆偏振光。这种差异被称为圆二色性,它提供了对分子手性和几何形状的重要见解。然而,圆二色性信号通常较弱。 在化学系的大分子,超分子和纳米化学以及化学测量和成像计划的支持下,莱斯大学的Stephan Link教授正在研究放置在两个金属纳米颗粒之间的差距中的单个蛋白质,这些蛋白质集中了光并放大了圆二色性信号。林克教授与他的学生一起,正在应用先进的组装方法来控制蛋白质的位置,并使用复杂的光谱学来研究潜在的增强机制,这仍然是知之甚少。他们的发现可能对理解神经退行性疾病(如阿尔茨海默氏症和帕金森氏症)具有深远的适用性。此外,该项目融合了多个学科的概念,为博士后研究人员、研究生、本科生和高中生提供了一个有吸引力的培训平台。为了利用定义的纳米级组装和电场操作来检测单个手性分子及其结构动力学,Link实验室正在应用DNA折纸方法来精确控制纳米级几何形状,并结合为确定单分子等离子体复合物的圆二色性信号而开发的独特光谱功能。电磁模拟和电子显微镜有助于区分由等离子体纳米结构本身产生的光学活性与感兴趣的手性分子。这些研究正在推进对等离子体耦合圆二色性的机理理解,并允许人们使用圆二色性来创建用于感测单个蛋白质的分子结构的基底。该项目还利用全内反射产生的表面限制波研究余摆线二向色性。 次摆线场具有沿着光的传播方向的电分量,并且仅存在于界面处。Link实验室正在探索当这种场的侧手翻运动的手性被切换时,哪些纳米结构和分子几何形状对余摆线场特别敏感。林克教授还参加了莱斯大学的公民科学家计划,使他能够教育K-12学生关于纳米技术,并激励他们追求科学事业。这个奖项反映了NSF的法定使命,并已被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。
项目成果
期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Polarized evanescent waves reveal trochoidal dichroism
- DOI:10.1073/pnas.2004169117
- 发表时间:2020-07-14
- 期刊:
- 影响因子:11.1
- 作者:McCarthy, Lauren A.;Smith, Kyle W.;Link, Stephan
- 通讯作者:Link, Stephan
Extrinsic Trochoidal Dichroism is Modulated by Nanoparticle Symmetry
外在摆线二色性由纳米粒子对称性调制
- DOI:10.1021/acs.jpcc.0c11227
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:McCarthy, Lauren A.;Hosseini Jebeli, Seyyed Ali;Link, Stephan
- 通讯作者:Link, Stephan
Unraveling the origin of chirality from plasmonic nanoparticle-protein complexes
- DOI:10.1126/science.aax5415
- 发表时间:2019-09-27
- 期刊:
- 影响因子:56.9
- 作者:Zhang, Qingfeng;Hernandez, Taylor;Link, Stephan
- 通讯作者:Link, Stephan
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Stephan Link其他文献
Plasmonic colour generation
等离子体激元颜色生成
- DOI:
10.1038/natrevmats.2016.88 - 发表时间:
2016-11-22 - 期刊:
- 影响因子:86.200
- 作者:
Anders Kristensen;Joel K. W. Yang;Sergey I. Bozhevolnyi;Stephan Link;Peter Nordlander;Naomi J. Halas;N. Asger Mortensen - 通讯作者:
N. Asger Mortensen
Bottom-up carbon dots: purification, single-particle dynamics, and electronic structure
自下而上的碳点:纯化、单粒子动力学和电子结构
- DOI:
10.1039/d4sc05843g - 发表时间:
2025-01-30 - 期刊:
- 影响因子:7.400
- 作者:
Zhengyi Bian;Eric Gomez;Martin Gruebele;Benjamin G. Levine;Stephan Link;Arshad Mehmood;Shuming Nie - 通讯作者:
Shuming Nie
Nano-optics from sensing to waveguiding
从传感到波导的纳米光学
- DOI:
10.1038/nphoton.2007.223 - 发表时间:
2007-11-01 - 期刊:
- 影响因子:32.900
- 作者:
Surbhi Lal;Stephan Link;Naomi J. Halas - 通讯作者:
Naomi J. Halas
Early-Career and Emerging Researchers in Physical Chemistry Volume 2.
物理化学领域的早期职业和新兴研究人员第 2 卷。
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:3.3
- 作者:
A. Alexandrova;J. Biteen;S. Coriani;F. Geiger;A. Gewirth;G. Goward;Hua Guo;Libai Huang;Jianfeng Li;T. Liedl;Stephan Link;Zhi;S. Maiti;A. Orr;David L Osborn;J. Pfaendtner;Benoı T Roux;Friederike Schmid;J. R. Schmidt;William F. Schneider;L. Slipchenko;G. Solomon;J. V. van Bokhoven;V. Van Speybroeck;Shen Ye;T. D. Crawford;M. Zanni;G. Hartland;J. Shea - 通讯作者:
J. Shea
Stephan Link的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Stephan Link', 18)}}的其他基金
Collaborative Research: Workshop: Challenges and Prospects for the Next 10 Years of Nanochemistry
合作研究:研讨会:纳米化学未来十年的挑战与前景
- 批准号:
2316670 - 财政年份:2023
- 资助金额:
$ 55.03万 - 项目类别:
Standard Grant
Direct Interfacial Charge Separation in Plasmonic Heterostructures Revealed by Single-Particle Spectroscopy
单粒子光谱揭示等离激元异质结构中的直接界面电荷分离
- 批准号:
2225592 - 财政年份:2022
- 资助金额:
$ 55.03万 - 项目类别:
Standard Grant
COLLABORATIVE RESEARCH: DMREF: Designing Plasmonic Nanoparticle Assemblies For Active Nanoscale Temperature Control By Exploiting Near- And Far-Field Coupling
合作研究:DMREF:通过利用近场和远场耦合设计用于主动纳米级温度控制的等离激元纳米颗粒组件
- 批准号:
2118420 - 财政年份:2021
- 资助金额:
$ 55.03万 - 项目类别:
Standard Grant
DMREF: Collaborative Research: Nanoscale Temperature Manipulation via Plasmonic Fano Interferences
DMREF:协作研究:通过等离子体 Fano 干扰进行纳米级温度操纵
- 批准号:
1727122 - 财政年份:2017
- 资助金额:
$ 55.03万 - 项目类别:
Standard Grant
OP: Ultrafast and Optomechanical Properties of Individual Plasmonic Antennas
OP:单个等离子体天线的超快和光机械特性
- 批准号:
1608917 - 财政年份:2016
- 资助金额:
$ 55.03万 - 项目类别:
Standard Grant
Chiral Plasmonics at the Single Nanoparticle and Single Molecule Level
单纳米颗粒和单分子水平的手性等离子体
- 批准号:
1507745 - 财政年份:2015
- 资助金额:
$ 55.03万 - 项目类别:
Standard Grant
Probing Dynamics and Structure of the Nanoparticle Protein Corona to Understand Its Impacts on Environmental Health and Safety
探测纳米颗粒蛋白电晕的动力学和结构,以了解其对环境健康和安全的影响
- 批准号:
1438634 - 财政年份:2014
- 资助金额:
$ 55.03万 - 项目类别:
Standard Grant
CAREER: Novel Plasmonic Properties of Individual Nanoparticle Chains Investigated by Correlated Structural Imaging and Single Particle Spectroscopy
职业:通过相关结构成像和单粒子光谱研究单个纳米粒子链的新颖等离子体特性
- 批准号:
0955286 - 财政年份:2010
- 资助金额:
$ 55.03万 - 项目类别:
Continuing Grant
相似海外基金
A new control scheme of the polarization-circulation speed-meter as a gravitational wave detector
一种新的引力波探测器偏振环流速度计控制方案
- 批准号:
23H01205 - 财政年份:2023
- 资助金额:
$ 55.03万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Extension of Babinet's principle to reflective metasurfaces and its applications to polarization and wavefront control for terahertz waves
巴比内原理向反射超表面的扩展及其在太赫兹波偏振和波前控制中的应用
- 批准号:
23K04612 - 财政年份:2023
- 资助金额:
$ 55.03万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Studies on the control of disease progression of prion diseases by transition of glial cell polarization
胶质细胞极化转变控制朊病毒疾病进展的研究
- 批准号:
22H02507 - 财政年份:2022
- 资助金额:
$ 55.03万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
High harmonic spectroscopy and ultrafast control of material using the polarization gating
高次谐波光谱和使用偏振选通的材料超快控制
- 批准号:
22K03484 - 财政年份:2022
- 资助金额:
$ 55.03万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Non-invasive electric field sensing by second harmonic generation with self-polarization control
通过自极化控制产生二次谐波进行非侵入式电场传感
- 批准号:
22H01462 - 财政年份:2022
- 资助金额:
$ 55.03万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Polarization control of spin wave spin current and its device application
自旋波自旋电流的偏振控制及其器件应用
- 批准号:
22H01936 - 财政年份:2022
- 资助金额:
$ 55.03万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Clarification of and treatment strategy for intractable soft and hard tissue diseases based on control of macrophage polarization
基于控制巨噬细胞极化的软硬组织疑难疾病的阐明及治疗策略
- 批准号:
21K09980 - 财政年份:2021
- 资助金额:
$ 55.03万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Simultaneous and independent control of amplitude, phase, and polarization of the optical wave by double phase meta-hologram using dielectric meta-atom
使用介电元原子通过双相元全息图同时独立地控制光波的幅度、相位和偏振
- 批准号:
21H01838 - 财政年份:2021
- 资助金额:
$ 55.03万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Spatio-temporal-polarization control of ultrafast laser interactions
超快激光相互作用的时空偏振控制
- 批准号:
RGPIN-2017-06948 - 财政年份:2021
- 资助金额:
$ 55.03万 - 项目类别:
Discovery Grants Program - Individual
Control of spin and polarization by hidden topological singularities
通过隐藏的拓扑奇点控制自旋和偏振
- 批准号:
20K14390 - 财政年份:2020
- 资助金额:
$ 55.03万 - 项目类别:
Grant-in-Aid for Early-Career Scientists