Direct Interfacial Charge Separation in Plasmonic Heterostructures Revealed by Single-Particle Spectroscopy
单粒子光谱揭示等离激元异质结构中的直接界面电荷分离
基本信息
- 批准号:2225592
- 负责人:
- 金额:$ 49.96万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-01 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Non-Technical DescriptionThis project is developing methods to understand how metal nanoparticles, 1000 times smaller than the width of a hair, capture and convert light into usable energy when contacting metal oxide semiconductors. Although metal nanoparticles efficiently absorb light, most of the absorbed energy is converted into heat. On the other hand, metal oxide semiconductors can store light energy for much longer times than metals making them useful for applications such as photodetection. However, metal oxide semiconductors do not absorb as strongly or often only at specific wavelengths, while metal nanoparticle can be designed to strongly interact with light of any color. This project overcomes these limitations by combining the high absorption of metal nanoparticles with the longer lifetimes of the absorbed light energy in metal oxide semiconductors. The principal investigator uses techniques that allow him to study how the light energy absorbed by a metal nanoparticle is transferred to an adjacent metal oxide semiconductor layer. These experiments are carried out for one nanoparticle at a time to resolve heterogeneities that arise from materials synthesis. In addition, the PI is continuing his longstanding participation in Rice University’s Civic Scientist Program and Research Experience for Teachers, allowing him to educate K-12 students about nanotechnology and inspire them to pursue scientific careers as well as to provide teachers with experience to in turn help students in those pursuits.Technical DescriptionThe goal of this project is to understand and maximize plasmon decay into charge separated states between a metal nanoparticle and an adjacent metal oxide semiconductor via direct charge transfer following plasmon excitation. The principal investigator will accomplish this goal by addressing the following objectives: 1) Design and fabricate plasmonic metal–semiconductor heterostructures and establish a correlation with interface induced plasmon decay via changes to the homogeneous plasmon linewidth; 2) Quantitatively determine charge injection into semiconductors surrounding plasmonic nanostructures using single particle ultrafast spectroscopy and correlate with efficiencies obtained from plasmon damping; 3) Apply Stokes and anti-Stokes emission spectroscopy to independently follow interfacial charge transfer through emission quenching under both one- and multi-photon excitation conditions. These proposed studies will elucidate the mechanism of interfacial charge transfer in plasmonic heterostructures and the underlying material parameters that determine efficiencies with a focus on excess energy as determined by the plasmon resonance and the relative band alignment including Schottky barrier height. Such detailed mechanistic information would be impossible to obtain without single-particle techniques due to the heterogeneity of plasmonic nanoparticle sizes and local environments. The proposed studies will potentially have a transformative impact on developing efficient photovoltaic devices based on plasmonic metal-semiconductor heterostructures taking advantage of a wide wavelength sensitivity, large absorption cross section, and long hot carrier lifetime.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术描述该项目正在开发方法,以了解比头发宽度小1000倍的金属纳米颗粒如何在接触金属氧化物半导体时捕获光并将其转换为可用能量。虽然金属纳米粒子能有效地吸收光,但吸收的大部分能量都转化为热。另一方面,金属氧化物半导体储存光能的时间比金属长得多,这使得它们在光探测等应用中非常有用。然而,金属氧化物半导体不能强烈地吸收或通常只吸收特定波长的光,而金属纳米粒子可以被设计成与任何颜色的光强烈相互作用。该项目通过将金属纳米颗粒的高吸收率与金属氧化物半导体中吸收光能的较长寿命相结合,克服了这些限制。首席研究员使用的技术使他能够研究金属纳米颗粒吸收的光能如何转移到相邻的金属氧化物半导体层。这些实验是一次对一个纳米粒子进行的,以解决材料合成时产生的不均匀性。此外,PI继续长期参与莱斯大学的公民科学家计划和教师研究经验,使他能够教育K-12学生关于纳米技术,激励他们追求科学事业,并为教师提供经验,反过来帮助学生在这些追求。技术描述这个项目的目标是了解和最大化等离子体衰变成一个金属纳米粒子和相邻的金属氧化物半导体之间的电荷分离状态,通过直接电荷转移等离子体激发。主要研究者将通过解决以下目标来实现这一目标:1)设计和制造等离子体金属-半导体异质结构,并通过改变均匀等离子体线宽建立与界面诱导等离子体衰变的相关性;2)利用单粒子超快光谱定量确定等离子体纳米结构周围半导体的电荷注入,并与等离子体阻尼获得的效率相关联;3)应用Stokes和反Stokes发射光谱独立跟踪单光子和多光子激发条件下发射猝灭的界面电荷转移。这些建议的研究将阐明等离子体异质结构中界面电荷转移的机制,以及决定效率的潜在材料参数,重点是由等离子体共振和包括肖特基势垒高度在内的相对带对准决定的多余能量。由于等离子体纳米粒子大小和局部环境的不均匀性,如果没有单粒子技术,就不可能获得如此详细的机制信息。这些研究将潜在地对基于等离子体金属-半导体异质结构的高效光伏器件的开发产生变革性影响,该异质结构具有宽波长灵敏度、大吸收截面和长热载流子寿命的优点。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Stephan Link其他文献
Bottom-up carbon dots: purification, single-particle dynamics, and electronic structure
自下而上的碳点:纯化、单粒子动力学和电子结构
- DOI:
10.1039/d4sc05843g - 发表时间:
2025-01-30 - 期刊:
- 影响因子:7.400
- 作者:
Zhengyi Bian;Eric Gomez;Martin Gruebele;Benjamin G. Levine;Stephan Link;Arshad Mehmood;Shuming Nie - 通讯作者:
Shuming Nie
Plasmonic colour generation
等离子体激元颜色生成
- DOI:
10.1038/natrevmats.2016.88 - 发表时间:
2016-11-22 - 期刊:
- 影响因子:86.200
- 作者:
Anders Kristensen;Joel K. W. Yang;Sergey I. Bozhevolnyi;Stephan Link;Peter Nordlander;Naomi J. Halas;N. Asger Mortensen - 通讯作者:
N. Asger Mortensen
Nano-optics from sensing to waveguiding
从传感到波导的纳米光学
- DOI:
10.1038/nphoton.2007.223 - 发表时间:
2007-11-01 - 期刊:
- 影响因子:32.900
- 作者:
Surbhi Lal;Stephan Link;Naomi J. Halas - 通讯作者:
Naomi J. Halas
Early-Career and Emerging Researchers in Physical Chemistry Volume 2.
物理化学领域的早期职业和新兴研究人员第 2 卷。
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:3.3
- 作者:
A. Alexandrova;J. Biteen;S. Coriani;F. Geiger;A. Gewirth;G. Goward;Hua Guo;Libai Huang;Jianfeng Li;T. Liedl;Stephan Link;Zhi;S. Maiti;A. Orr;David L Osborn;J. Pfaendtner;Benoı T Roux;Friederike Schmid;J. R. Schmidt;William F. Schneider;L. Slipchenko;G. Solomon;J. V. van Bokhoven;V. Van Speybroeck;Shen Ye;T. D. Crawford;M. Zanni;G. Hartland;J. Shea - 通讯作者:
J. Shea
Stephan Link的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Stephan Link', 18)}}的其他基金
Collaborative Research: Workshop: Challenges and Prospects for the Next 10 Years of Nanochemistry
合作研究:研讨会:纳米化学未来十年的挑战与前景
- 批准号:
2316670 - 财政年份:2023
- 资助金额:
$ 49.96万 - 项目类别:
Standard Grant
COLLABORATIVE RESEARCH: DMREF: Designing Plasmonic Nanoparticle Assemblies For Active Nanoscale Temperature Control By Exploiting Near- And Far-Field Coupling
合作研究:DMREF:通过利用近场和远场耦合设计用于主动纳米级温度控制的等离激元纳米颗粒组件
- 批准号:
2118420 - 财政年份:2021
- 资助金额:
$ 49.96万 - 项目类别:
Standard Grant
Nanoscale Polarization Control for Single Molecule Detection: Circular and Trochoidal Dichroism
用于单分子检测的纳米级偏振控制:圆和摆线二色性
- 批准号:
1903980 - 财政年份:2019
- 资助金额:
$ 49.96万 - 项目类别:
Standard Grant
DMREF: Collaborative Research: Nanoscale Temperature Manipulation via Plasmonic Fano Interferences
DMREF:协作研究:通过等离子体 Fano 干扰进行纳米级温度操纵
- 批准号:
1727122 - 财政年份:2017
- 资助金额:
$ 49.96万 - 项目类别:
Standard Grant
OP: Ultrafast and Optomechanical Properties of Individual Plasmonic Antennas
OP:单个等离子体天线的超快和光机械特性
- 批准号:
1608917 - 财政年份:2016
- 资助金额:
$ 49.96万 - 项目类别:
Standard Grant
Chiral Plasmonics at the Single Nanoparticle and Single Molecule Level
单纳米颗粒和单分子水平的手性等离子体
- 批准号:
1507745 - 财政年份:2015
- 资助金额:
$ 49.96万 - 项目类别:
Standard Grant
Probing Dynamics and Structure of the Nanoparticle Protein Corona to Understand Its Impacts on Environmental Health and Safety
探测纳米颗粒蛋白电晕的动力学和结构,以了解其对环境健康和安全的影响
- 批准号:
1438634 - 财政年份:2014
- 资助金额:
$ 49.96万 - 项目类别:
Standard Grant
CAREER: Novel Plasmonic Properties of Individual Nanoparticle Chains Investigated by Correlated Structural Imaging and Single Particle Spectroscopy
职业:通过相关结构成像和单粒子光谱研究单个纳米粒子链的新颖等离子体特性
- 批准号:
0955286 - 财政年份:2010
- 资助金额:
$ 49.96万 - 项目类别:
Continuing Grant
相似海外基金
Anodized Ti-Nb-Ta-Zr-O nanotubes: Interfacial charge dynamics and solar hydrogen production
阳极氧化 Ti-Nb-Ta-Zr-O 纳米管:界面电荷动力学和太阳能制氢
- 批准号:
23K04369 - 财政年份:2023
- 资助金额:
$ 49.96万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Collaborative Research: RUI: Effects of Interfacial Properties on Charge Transport in Conducting Organic/Inorganic Composites
合作研究:RUI:界面性质对导电有机/无机复合材料中电荷传输的影响
- 批准号:
2226593 - 财政年份:2022
- 资助金额:
$ 49.96万 - 项目类别:
Continuing Grant
Collaborative Research: RUI: Effects of Interfacial Properties on Charge Transport in Conducting Organic/Inorganic Composites
合作研究:RUI:界面性质对导电有机/无机复合材料中电荷传输的影响
- 批准号:
2226592 - 财政年份:2022
- 资助金额:
$ 49.96万 - 项目类别:
Continuing Grant
An interfacial charge transfer approach to electron-doping layered nickelates
电子掺杂层状镍酸盐的界面电荷转移方法
- 批准号:
22K20347 - 财政年份:2022
- 资助金额:
$ 49.96万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Point of Anchor: Impacts on Interfacial Charge Transfer of Semiconductor Nanoparticles
锚点:对半导体纳米颗粒界面电荷转移的影响
- 批准号:
2003685 - 财政年份:2020
- 资助金额:
$ 49.96万 - 项目类别:
Standard Grant
Neural Electrodes with Enhanced Charge Injection and Reduced Interfacial Impedance Using Graphenated Carbon Nanotubes Coated With Atomic Layer-Deposited Platinum Nanoparticles
使用原子层沉积铂纳米粒子涂覆的石墨化碳纳米管增强电荷注入并降低界面阻抗的神经电极
- 批准号:
9924896 - 财政年份:2020
- 资助金额:
$ 49.96万 - 项目类别:
CAS: Photoinduced Interfacial Charge Transfers with Organic Sensitizers using Low Energy Photons and Fundamental Physical Organic Design Concepts
CAS:使用低能光子和基本物理有机设计概念通过有机敏化剂进行光诱导界面电荷转移
- 批准号:
1954922 - 财政年份:2020
- 资助金额:
$ 49.96万 - 项目类别:
Standard Grant
Ultra-fast interfacial charge transfer probed using a core-hole clock implementation of resonant inelastic x-ray scattering (RIXS)
使用共振非弹性 X 射线散射 (RIXS) 的芯孔时钟实现探测超快界面电荷转移
- 批准号:
EP/T004355/1 - 财政年份:2019
- 资助金额:
$ 49.96万 - 项目类别:
Research Grant
Enabling fast and efficient nonaqueous ion (co-)intercalation for high energy density charge storage via systematic interfacial design
通过系统化的界面设计实现快速高效的非水离子(共)嵌入以实现高能量密度电荷存储
- 批准号:
1905803 - 财政年份:2019
- 资助金额:
$ 49.96万 - 项目类别:
Standard Grant
Quantitative Analysis of Interfacial Charge Transport Mechanisms and Molecular Orientation Behavior of Organic Devices by Nonlinear Spectroscopy.
通过非线性光谱定量分析有机器件的界面电荷传输机制和分子取向行为。
- 批准号:
19H02793 - 财政年份:2019
- 资助金额:
$ 49.96万 - 项目类别:
Grant-in-Aid for Scientific Research (B)