DMREF: Collaborative Research: Nanoscale Temperature Manipulation via Plasmonic Fano Interferences

DMREF:协作研究:通过等离子体 Fano 干扰进行纳米级温度操纵

基本信息

  • 批准号:
    1727122
  • 负责人:
  • 金额:
    $ 46.95万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-08-15 至 2022-07-31
  • 项目状态:
    已结题

项目摘要

Thermal energy, also known as heat, flows naturally from hot objects to cold objects. One consequence of this heat flow is that it is difficult to create objects with localized "hot spots," even when heat is applied to a single spot. When touching a hot pan on the stove, the temperature of the lid on top of the pan is not much different than the bottom where the heat is applied. Depositing and maintaining thermal energy in a small region of space becomes even more challenging as the object's size approaches the tens to hundreds of nanometers, or about 1,000 times smaller than a human hair. Yet, the ability to control heat flow and thus temperature at nanoscopic dimensions has important implications for applications ranging from data storage and the local control of chemical reactions to photothermal therapies for disease treatment and pain management through ion channel stimulation. With support from the Designing Materials to Revolutionize and Engineer our Future (DMREF) Program in the Division of Chemistry (CHE) and the Division of Chemical, Bioengineering, Environmental, and Transport Systems (CBET), Professor David J. Masiello from the University of Washington, Professor Katherine A. Willets from Temple University, and Professor Stephan Link from Rice University are developing methods to theoretically design and experimentally realize a new class of materials capable of controllably directing temperature increases to nanoscale regions of space. Beyond impacting a wide variety of applications, the project is also facilitating the interdisciplinary training of students and postdoctoral researchers through student exchange between the three research groups. Together, the researchers and their students are designing plasmonic nanostructures that exploit Fano interferences to focus and convert optical radiation into precise nanoscopic temperature profiles that are actively tunable from the far-field. They are developing computer simulations to solve the coupled Maxwell-heat diffusion equations and using them to design novel plasmonic nanostructures with Fano interferences that are capable of localizing spatial temperature profiles at dimensions below the diffraction limit. The best candidates are then created in the laboratory and characterized using optical microscopies. Diffraction-limited, single-nanoparticle photothermal absorption spectroscopy techniques measure the heat power absorbed as well as the associated temperature change induced in the target material. Fluorescently-labeled stem-loop DNA structures are used to achieve super-resolution imaging of the nanoscopic temperature profile. The imaging results are then input into the design of the next generation of structures, providing the iterative feedback that is critical to the project's success.
热能,也称为热量,自然地从热的物体流向冷的物体。这种热流的一个后果是,即使将热量施加到单个点,也难以创建具有局部“热点”的对象。 当接触炉子上的热锅时,锅顶部的盖子的温度与施加热量的底部没有太大的不同。 在空间的一个小区域中存储和保持热能变得更具挑战性,因为物体的尺寸接近数十到数百纳米,或者比人类头发小1,000倍。 然而,在纳米尺度上控制热流和温度的能力对于从数据存储和化学反应的局部控制到用于通过离子通道刺激进行疾病治疗和疼痛管理的光热疗法的应用具有重要意义。 在化学系(CHE)和化学、生物工程、环境和运输系统系(CBET)设计材料以革命和工程我们的未来(DMREF)项目的支持下,来自华盛顿大学的大卫·J·马西洛(David J. Masiello)教授、凯瑟琳·A.坦普尔大学的Willets和莱斯大学的Stephan Link教授正在开发方法,从理论上设计和实验上实现一类新材料,这些材料能够可控地将温度升高引导到纳米空间区域。 除了影响各种各样的应用程序,该项目还通过三个研究小组之间的学生交流促进学生和博士后研究人员的跨学科培训。研究人员和他们的学生正在设计等离子体纳米结构,利用Fano干涉将光辐射聚焦并转换为精确的纳米级温度分布,这些温度分布可以从远场主动调节。 他们正在开发计算机模拟来求解耦合的麦克斯韦热扩散方程,并使用它们来设计具有Fano干涉的新型等离子体纳米结构,这些纳米结构能够在低于衍射极限的维度上定位空间温度分布。然后在实验室中创建最佳候选物,并使用光学显微镜进行表征。衍射限制,单纳米颗粒光热吸收光谱技术测量吸收的热功率以及在目标材料中引起的相关温度变化。 双标记的茎环DNA结构用于实现纳米级温度分布的超分辨率成像。成像结果随后被输入到下一代结构的设计中,提供对项目成功至关重要的迭代反馈。

项目成果

期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Extrinsic Trochoidal Dichroism is Modulated by Nanoparticle Symmetry
外在摆线二色性由纳米粒子对称性调制
  • DOI:
    10.1021/acs.jpcc.0c11227
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    McCarthy, Lauren A.;Hosseini Jebeli, Seyyed Ali;Link, Stephan
  • 通讯作者:
    Link, Stephan
Wavelength-Dependent Photothermal Imaging Probes Nanoscale Temperature Differences among Subdiffraction Coupled Plasmonic Nanorods
波长相关光热成像探针亚衍射耦合等离子体纳米棒之间的纳米级温度差异
  • DOI:
    10.1021/acs.nanolett.1c01740
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    10.8
  • 作者:
    Hosseini Jebeli, Seyyed Ali;West, Claire A.;Lee, Stephen A.;Goldwyn, Harrison J.;Bilchak, Connor R.;Fakhraai, Zahra;Willets, Katherine A.;Link, Stephan;Masiello, David J.
  • 通讯作者:
    Masiello, David J.
Single-Particle Hyperspectral Imaging Reveals Kinetics of Silver Ion Leaching from Alloy Nanoparticles
  • DOI:
    10.1021/acsnano.0c10150
  • 发表时间:
    2021-04-22
  • 期刊:
  • 影响因子:
    17.1
  • 作者:
    Al-Zubeidi, Alexander;Stein, Frederic;Link, Stephan
  • 通讯作者:
    Link, Stephan
Nonlinear effects in single-particle photothermal imaging
单粒子光热成像中的非线性效应
  • DOI:
    10.1063/5.0132167
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    West, Claire A.;Lee, Stephen A.;Shooter, Jesse;Searles, Emily K.;Goldwyn, Harrison J.;Willets, Katherine A.;Link, Stephan;Masiello, David J.
  • 通讯作者:
    Masiello, David J.
Coupled-Dipole Modeling and Experimental Characterization of Geometry-Dependent Trochoidal Dichroism in Nanorod Trimers
  • DOI:
    10.1021/acsphotonics.1c00073
  • 发表时间:
    2021-03-17
  • 期刊:
  • 影响因子:
    7
  • 作者:
    Baiyasi, Rashad;Goldwyn, Harrison J.;Landes, Christy F.
  • 通讯作者:
    Landes, Christy F.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Stephan Link其他文献

Plasmonic colour generation
等离子体激元颜色生成
  • DOI:
    10.1038/natrevmats.2016.88
  • 发表时间:
    2016-11-22
  • 期刊:
  • 影响因子:
    86.200
  • 作者:
    Anders Kristensen;Joel K. W. Yang;Sergey I. Bozhevolnyi;Stephan Link;Peter Nordlander;Naomi J. Halas;N. Asger Mortensen
  • 通讯作者:
    N. Asger Mortensen
Bottom-up carbon dots: purification, single-particle dynamics, and electronic structure
自下而上的碳点:纯化、单粒子动力学和电子结构
  • DOI:
    10.1039/d4sc05843g
  • 发表时间:
    2025-01-30
  • 期刊:
  • 影响因子:
    7.400
  • 作者:
    Zhengyi Bian;Eric Gomez;Martin Gruebele;Benjamin G. Levine;Stephan Link;Arshad Mehmood;Shuming Nie
  • 通讯作者:
    Shuming Nie
Nano-optics from sensing to waveguiding
从传感到波导的纳米光学
  • DOI:
    10.1038/nphoton.2007.223
  • 发表时间:
    2007-11-01
  • 期刊:
  • 影响因子:
    32.900
  • 作者:
    Surbhi Lal;Stephan Link;Naomi J. Halas
  • 通讯作者:
    Naomi J. Halas
Early-Career and Emerging Researchers in Physical Chemistry Volume 2.
物理化学领域的早期职业和新兴研究人员第 2 卷。
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    A. Alexandrova;J. Biteen;S. Coriani;F. Geiger;A. Gewirth;G. Goward;Hua Guo;Libai Huang;Jianfeng Li;T. Liedl;Stephan Link;Zhi;S. Maiti;A. Orr;David L Osborn;J. Pfaendtner;Benoı T Roux;Friederike Schmid;J. R. Schmidt;William F. Schneider;L. Slipchenko;G. Solomon;J. V. van Bokhoven;V. Van Speybroeck;Shen Ye;T. D. Crawford;M. Zanni;G. Hartland;J. Shea
  • 通讯作者:
    J. Shea

Stephan Link的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Stephan Link', 18)}}的其他基金

Collaborative Research: Workshop: Challenges and Prospects for the Next 10 Years of Nanochemistry
合作研究:研讨会:纳米化学未来十年的挑战与前景
  • 批准号:
    2316670
  • 财政年份:
    2023
  • 资助金额:
    $ 46.95万
  • 项目类别:
    Standard Grant
Direct Interfacial Charge Separation in Plasmonic Heterostructures Revealed by Single-Particle Spectroscopy
单粒子光谱揭示等离激元异质结构中的直接界面电荷分离
  • 批准号:
    2225592
  • 财政年份:
    2022
  • 资助金额:
    $ 46.95万
  • 项目类别:
    Standard Grant
COLLABORATIVE RESEARCH: DMREF: Designing Plasmonic Nanoparticle Assemblies For Active Nanoscale Temperature Control By Exploiting Near- And Far-Field Coupling
合作研究:DMREF:通过利用近场和远场耦合设计用于主动纳米级温度控制的等离激元纳米颗粒组件
  • 批准号:
    2118420
  • 财政年份:
    2021
  • 资助金额:
    $ 46.95万
  • 项目类别:
    Standard Grant
Nanoscale Polarization Control for Single Molecule Detection: Circular and Trochoidal Dichroism
用于单分子检测的纳米级偏振控制:圆和摆线二色性
  • 批准号:
    1903980
  • 财政年份:
    2019
  • 资助金额:
    $ 46.95万
  • 项目类别:
    Standard Grant
OP: Ultrafast and Optomechanical Properties of Individual Plasmonic Antennas
OP:单个等离子体天线的超快和光机械特性
  • 批准号:
    1608917
  • 财政年份:
    2016
  • 资助金额:
    $ 46.95万
  • 项目类别:
    Standard Grant
Chiral Plasmonics at the Single Nanoparticle and Single Molecule Level
单纳米颗粒和单分子水平的手性等离子体
  • 批准号:
    1507745
  • 财政年份:
    2015
  • 资助金额:
    $ 46.95万
  • 项目类别:
    Standard Grant
Probing Dynamics and Structure of the Nanoparticle Protein Corona to Understand Its Impacts on Environmental Health and Safety
探测纳米颗粒蛋白电晕的动力学和结构,以了解其对环境健康和安全的影响
  • 批准号:
    1438634
  • 财政年份:
    2014
  • 资助金额:
    $ 46.95万
  • 项目类别:
    Standard Grant
CAREER: Novel Plasmonic Properties of Individual Nanoparticle Chains Investigated by Correlated Structural Imaging and Single Particle Spectroscopy
职业:通过相关结构成像和单粒子光谱研究单个纳米粒子链的新颖等离子体特性
  • 批准号:
    0955286
  • 财政年份:
    2010
  • 资助金额:
    $ 46.95万
  • 项目类别:
    Continuing Grant

相似海外基金

Collaborative Research: DMREF: Closed-Loop Design of Polymers with Adaptive Networks for Extreme Mechanics
合作研究:DMREF:采用自适应网络进行极限力学的聚合物闭环设计
  • 批准号:
    2413579
  • 财政年份:
    2024
  • 资助金额:
    $ 46.95万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Organic Materials Architectured for Researching Vibronic Excitations with Light in the Infrared (MARVEL-IR)
合作研究:DMREF:用于研究红外光振动激发的有机材料 (MARVEL-IR)
  • 批准号:
    2409552
  • 财政年份:
    2024
  • 资助金额:
    $ 46.95万
  • 项目类别:
    Continuing Grant
Collaborative Research: DMREF: AI-enabled Automated design of ultrastrong and ultraelastic metallic alloys
合作研究:DMREF:基于人工智能的超强和超弹性金属合金的自动化设计
  • 批准号:
    2411603
  • 财政年份:
    2024
  • 资助金额:
    $ 46.95万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Predicting Molecular Interactions to Stabilize Viral Therapies
合作研究:DMREF:预测分子相互作用以稳定病毒疗法
  • 批准号:
    2325392
  • 财政年份:
    2023
  • 资助金额:
    $ 46.95万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Topologically Designed and Resilient Ultrahigh Temperature Ceramics
合作研究:DMREF:拓扑设计和弹性超高温陶瓷
  • 批准号:
    2323458
  • 财政年份:
    2023
  • 资助金额:
    $ 46.95万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Deep learning guided twistronics for self-assembled quantum optoelectronics
合作研究:DMREF:用于自组装量子光电子学的深度学习引导双电子学
  • 批准号:
    2323470
  • 财政年份:
    2023
  • 资助金额:
    $ 46.95万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Multi-material digital light processing of functional polymers
合作研究:DMREF:功能聚合物的多材料数字光处理
  • 批准号:
    2323715
  • 财政年份:
    2023
  • 资助金额:
    $ 46.95万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Organic Materials Architectured for Researching Vibronic Excitations with Light in the Infrared (MARVEL-IR)
合作研究:DMREF:用于研究红外光振动激发的有机材料 (MARVEL-IR)
  • 批准号:
    2323667
  • 财政年份:
    2023
  • 资助金额:
    $ 46.95万
  • 项目类别:
    Continuing Grant
Collaborative Research: DMREF: Simulation-Informed Models for Amorphous Metal Additive Manufacturing
合作研究:DMREF:非晶金属增材制造的仿真模型
  • 批准号:
    2323719
  • 财政年份:
    2023
  • 资助金额:
    $ 46.95万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Closed-Loop Design of Polymers with Adaptive Networks for Extreme Mechanics
合作研究:DMREF:采用自适应网络进行极限力学的聚合物闭环设计
  • 批准号:
    2323727
  • 财政年份:
    2023
  • 资助金额:
    $ 46.95万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了