Collaborative Research: High-Dimensional Projection Tests and Related Topics
合作研究:高维投影测试及相关主题
基本信息
- 批准号:1512422
- 负责人:
- 金额:$ 12.33万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-07-01 至 2019-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Although high-dimensional data analysis has become the most active research area in statistics, there are still many challenging unsolved problems which call for the development of new methods and theory. This project aims to develop new statistical tools and software to statistical modeling and inference on high-dimensional data. The proposed research is expected to significantly enhance the availability of statistical tools and software for analysis of high-dimensional data, which have frequently been collected in many research areas including genomics, biomedical imaging, functional magnetic resonance imaging, tomography, tumor classifications and finance. Hence, the proposed work is expected to benefit a broad range of scientists and researchers in various fields. Considerable attention has been devoted to high-dimensional estimation and sparsity recovery over the last 10 years, but much less is known about hypothesis testing. In this project, the PIs first plan to develop new projection Hotelling's test and chi-squares tests for high-dimensional one-sample and two-sample mean problems. The tests are distinguished from the existing ones in that they are based on optimal projection directions that are derived to achieve optimal power performance. The PIs further propose an effective data-driven method to estimate the optimal projection direction by a sample-splitting strategy. The proposed procedure can be easily carried out. They plan to investigate the estimation of the sparsity optimal projection direction via regularization methods. Linear discriminant analysis has been hugely successful in classification, but most of the existing procedures cannot handle diverging number of classes. In this project, they also plan to study ultrahigh dimensional linear discriminant analysis with a diverging number of classes and develop new procedures enable researchers to apply low-dimensional linear discriminant analysis techniques for ultrahigh-dimensional linear discriminant analysis, and make ultrahigh-dimensional linear discriminant analysis with a diverging number of classes computationally feasible in practice. This model and associated new methodology have high potential for big data analysis. The PIs plan to continue collaborating with engineers, meteorologists, public health science researchers and prevention researchers and introduce the proposed methodology to scientists beyond statistics and biostatistics. The PIs plan to disseminate the research results through publications, conference presentations and software distribution.
虽然高维数据分析已成为统计学中最活跃的研究领域,但仍有许多具有挑战性的问题尚未解决,需要新的方法和理论的发展。本项目旨在开发新的统计工具和软件,对高维数据进行统计建模和推理。预计拟议的研究将大大提高用于分析高维数据的统计工具和软件的可用性,这些数据经常在许多研究领域收集,包括基因组学,生物医学成像,功能性磁共振成像,断层扫描,肿瘤分类和金融。因此,预计拟议的工作将使各个领域的广泛科学家和研究人员受益。在过去的10年里,人们对高维估计和稀疏性恢复给予了相当大的关注,但对假设检验的了解却少得多。在这个项目中,PI首先计划为高维单样本和双样本均值问题开发新的投影Hotelling检验和卡方检验。这些测试与现有的测试的区别在于,它们基于最佳投影方向,这些方向是为了实现最佳功率性能而导出的。PI进一步提出了一种有效的数据驱动的方法来估计最佳投影方向的样本分裂策略。建议的程序可以很容易地执行。他们计划通过正则化方法研究稀疏最佳投影方向的估计。线性判别分析在分类中取得了巨大的成功,但大多数现有的程序不能处理不同数量的类。在这个项目中,他们还计划研究具有发散类数的多维线性判别分析,并开发新的程序,使研究人员能够将低维线性判别分析技术应用于超高维线性判别分析,并使具有发散类数的超高维线性判别分析在实际计算中可行。这种模型和相关的新方法在大数据分析方面具有很高的潜力。PI计划继续与工程师,气象学家,公共卫生科学研究人员和预防研究人员合作,并向统计学和生物统计学之外的科学家介绍拟议的方法。研究所计划通过出版物、会议介绍和软件分发来传播研究成果。
项目成果
期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
LINEAR HYPOTHESIS TESTING FOR HIGH DIMENSIONAL GENERALIZED LINEAR MODELS
- DOI:10.1214/18-aos1761
- 发表时间:2019-10-01
- 期刊:
- 影响因子:4.5
- 作者:Shi, Chengchun;Song, Rui;Li, Runze
- 通讯作者:Li, Runze
HYPOTHESIS TESTING ON LINEAR STRUCTURES OF HIGH DIMENSIONAL COVARIANCE MATRIX.
- DOI:10.1214/18-aos1779
- 发表时间:2019-12
- 期刊:
- 影响因子:4.5
- 作者:Shu-rong Zheng;Zhao Chen;H. Cui;Runze Li
- 通讯作者:Shu-rong Zheng;Zhao Chen;H. Cui;Runze Li
Sample average approximation with sparsity-inducing penalty for high-dimensional stochastic programming
- DOI:10.1007/s10107-018-1278-0
- 发表时间:2018-05
- 期刊:
- 影响因子:2.7
- 作者:Hongcheng Liu;Xue Wang;Tao Yao;Runze Li;Y. Ye
- 通讯作者:Hongcheng Liu;Xue Wang;Tao Yao;Runze Li;Y. Ye
Examining measurement reactivity in daily diary data on substance use: Results from a randomized experiment
- DOI:10.1016/j.addbeh.2019.106198
- 发表时间:2020-03-01
- 期刊:
- 影响因子:4.4
- 作者:Buu, Anne;Yang, Songshan;Walton, Maureen A.
- 通讯作者:Walton, Maureen A.
Statistical methods for evaluating the correlation between timeline follow-back data and daily process data with applications to research on alcohol and marijuana use
- DOI:10.1016/j.addbeh.2018.12.024
- 发表时间:2019-07-01
- 期刊:
- 影响因子:4.4
- 作者:Liu, Wanjun;Li, Runze;Buu, Anne
- 通讯作者:Buu, Anne
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Runze Li其他文献
Integrating Hybrid Pyramid Feature Fusion and Coordinate Attention for Effective Small Sample Hyperspectral Image Classification
集成混合金字塔特征融合和协调注意力以实现有效的小样本高光谱图像分类
- DOI:
10.3390/rs14102355 - 发表时间:
2022-05 - 期刊:
- 影响因子:5
- 作者:
Chen Ding;Youfa Chen;Runze Li;Dushi Wen;Xiaoyan Xie;Lei Zhang;Wei Wei;Yanning Zhang - 通讯作者:
Yanning Zhang
Spectral analysis and power spectral density evaluation in Al2O3 nanofluid minimum quantity lubrication milling of 45 steel
45钢Al2O3纳米流体微量润滑铣削的谱分析及功率谱密度评价
- DOI:
10.1007/s00170-018-1942-9 - 发表时间:
2018-03 - 期刊:
- 影响因子:0
- 作者:
Qingan Yin;Changhe Li;Yanbin Zhang;Min Yang;Dongzhou Jia;Yali Hou;Runze Li;Lan Dong - 通讯作者:
Lan Dong
Physically Interpretable Feature Learning of Supercritical Airfoils Based on Variational Autoencoders
基于变分自动编码器的超临界翼型的物理可解释特征学习
- DOI:
10.2514/1.j061673 - 发表时间:
2022 - 期刊:
- 影响因子:2.5
- 作者:
Runze Li;Yufei Zhang;Haixin Chen - 通讯作者:
Haixin Chen
Multiple Multi-Scale Neural Networks Knowledge Transfer and Integration for Accurate Pixel-Level Retinal Blood Vessel Segmentation
多个多尺度神经网络知识转移和集成,实现精确的像素级视网膜血管分割
- DOI:
10.3390/app112411907 - 发表时间:
2021-12 - 期刊:
- 影响因子:0
- 作者:
Chen Ding;Runze Li;Zhouyi Zheng;Youfa Chen;Dushi Wen;Lei Zhang;Wei Wei;Yanning Zhang - 通讯作者:
Yanning Zhang
MODEL SELECTION FOR ANALYSIS OF UNIFORM DESIGN AND COMPUTER EXPERIMENT
- DOI:
10.1142/s0218539302000901 - 发表时间:
2002-12 - 期刊:
- 影响因子:0
- 作者:
Runze Li - 通讯作者:
Runze Li
Runze Li的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Runze Li', 18)}}的其他基金
Optimization and Statistical Procedures for Big Data and Applications
大数据及其应用的优化和统计程序
- 批准号:
1820702 - 财政年份:2018
- 资助金额:
$ 12.33万 - 项目类别:
Continuing Grant
The First Institute of Mathematical Statistics Asia Pacific Rim Meetings
第一届数理统计研究所环亚太会议
- 批准号:
0855596 - 财政年份:2009
- 资助金额:
$ 12.33万 - 项目类别:
Standard Grant
CAMLET: A Combined Ab-initio Manifold Learning Toolbox for Nanostructure Simulations
CAMLET:用于纳米结构模拟的组合从头算流形学习工具箱
- 批准号:
0430349 - 财政年份:2004
- 资助金额:
$ 12.33万 - 项目类别:
Continuing Grant
CAREER: Model Selection for Semiparametric Regression Models in High Dimensional Modeling and its Oracle Properties
职业:高维建模中半参数回归模型的模型选择及其 Oracle 属性
- 批准号:
0348869 - 财政年份:2004
- 资助金额:
$ 12.33万 - 项目类别:
Continuing Grant
Variable Selection in High-Dimensional Modeling and Its Oracle Properties
高维建模中的变量选择及其预言属性
- 批准号:
0102505 - 财政年份:2001
- 资助金额:
$ 12.33万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Four-Dimensional (4D) Investigation of Tropical Waves Using High-Resolution GNSS Radio Occultation from Strateole2 Balloons
合作研究:利用 Strateole2 气球的高分辨率 GNSS 无线电掩星对热带波进行四维 (4D) 研究
- 批准号:
2402729 - 财政年份:2024
- 资助金额:
$ 12.33万 - 项目类别:
Continuing Grant
Collaborative Research: Manipulating the Thermal Properties of Two-Dimensional Materials Through Interface Structure and Chemistry
合作研究:通过界面结构和化学控制二维材料的热性能
- 批准号:
2400352 - 财政年份:2024
- 资助金额:
$ 12.33万 - 项目类别:
Standard Grant
Collaborative Research: Manipulating the Thermal Properties of Two-Dimensional Materials Through Interface Structure and Chemistry
合作研究:通过界面结构和化学控制二维材料的热性能
- 批准号:
2400353 - 财政年份:2024
- 资助金额:
$ 12.33万 - 项目类别:
Standard Grant
Collaborative Research: Four-Dimensional (4D) Investigation of Tropical Waves Using High-Resolution GNSS Radio Occultation from Strateole2 Balloons
合作研究:利用 Strateole2 气球的高分辨率 GNSS 无线电掩星对热带波进行四维 (4D) 研究
- 批准号:
2402728 - 财政年份:2024
- 资助金额:
$ 12.33万 - 项目类别:
Continuing Grant
Collaborative Research: Learning and forecasting high-dimensional extremes: sparsity, causality, privacy
协作研究:学习和预测高维极端情况:稀疏性、因果关系、隐私
- 批准号:
2310974 - 财政年份:2023
- 资助金额:
$ 12.33万 - 项目类别:
Standard Grant
Collaborative Research: EDGE CMT: A four-dimensional genotype-phenotype map of poison frog skin color
合作研究:EDGE CMT:毒蛙肤色的四维基因型-表型图
- 批准号:
2319711 - 财政年份:2023
- 资助金额:
$ 12.33万 - 项目类别:
Continuing Grant
Collaborative Research: DMREF: Developing and Harnessing the Platform of Quasi-One-Dimensional Topological Materials for Novel Functionalities and Devices
合作研究:DMREF:开发和利用用于新功能和器件的准一维拓扑材料平台
- 批准号:
2324033 - 财政年份:2023
- 资助金额:
$ 12.33万 - 项目类别:
Standard Grant
Collaborative Research: EDGE CMT: A four-dimensional genotype-phenotype map of poison frog skin color
合作研究:EDGE CMT:毒蛙肤色的四维基因型-表型图
- 批准号:
2319712 - 财政年份:2023
- 资助金额:
$ 12.33万 - 项目类别:
Standard Grant
Collaborative Research: Adaptive Data Assimilation for Nonlinear, Non-Gaussian, and High-Dimensional Combustion Problems on Supercomputers
合作研究:超级计算机上非线性、非高斯和高维燃烧问题的自适应数据同化
- 批准号:
2403552 - 财政年份:2023
- 资助金额:
$ 12.33万 - 项目类别:
Continuing Grant
Collaborative Research: New Theory and Methods for High-Dimensional Multi-Task and Transfer Learning Inference
合作研究:高维多任务和迁移学习推理的新理论和新方法
- 批准号:
2324490 - 财政年份:2023
- 资助金额:
$ 12.33万 - 项目类别:
Continuing Grant