Optimization and Statistical Procedures for Big Data and Applications
大数据及其应用的优化和统计程序
基本信息
- 批准号:1820702
- 负责人:
- 金额:$ 35万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-07-01 至 2023-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In the era of big data, data sets may be massive in size and have high dimensionality. Examples include social media data, high-resolution image data, and genomic data. High dimensionality and massive sample size pose great computational and statistical challenges. This project aims to investigate novel optimization techniques and statistical analytic tools for big data collected in important applications. The project will significantly enhance the capabilities of optimization and statistics in analyzing big data. Results of the project are anticipated to benefit a broad range of areas including public health, medical studies, and financial portfolio management.This project consists of three sub-projects to advance knowledge in modern optimization techniques and statistical procedures for big data. (1) The project studies a unified framework for high-dimensional constrained regularization, and further investigates the statistical performance of a general framework for high-dimensional data under folded concave penalty and fixed constraints. (2) The project explores efficient distributed algorithms for constrained statistical learning, investigating communication-efficient sample-splitting algorithms to handle the vast number of samples and high communication cost in high-dimensional constrained regularization problems with folded concave penalty. The project will study the convergence of the new algorithms for non-convex learning as well as statistical convergence. The work demonstrates the necessity to consider statistical analysis and optimization analysis simultaneously. (3) The investigators plan to apply the methodology in analyzing big data sets to address clinical and scientific questions related to Parkinson's disease.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在大数据时代,数据集可能是海量的,具有高维。例如,社交媒体数据、高分辨率图像数据和基因组数据。高维和海量样本给计算和统计带来了巨大的挑战。该项目旨在为在重要应用中收集的大数据研究新的优化技术和统计分析工具。该项目将显著增强大数据分析的优化和统计能力。该项目的成果预计将惠及公共卫生、医学研究和金融投资组合管理等广泛领域。该项目由三个子项目组成,以促进现代优化技术和大数据统计程序的知识。(1)研究了高维约束正则化的统一框架,并进一步研究了高维数据的一般框架在折叠凹罚和固定约束下的统计性能。(2)探索了高效的分布式受限统计学习算法,研究了通信高效的样本分裂算法,用于处理具有折叠凹罚的高维约束正则化问题中的大量样本和高通信代价。该项目将研究非凸学习的新算法的收敛以及统计收敛。这项工作论证了同时考虑统计分析和优化分析的必要性。(3)研究人员计划将该方法应用于分析大数据集,以解决与帕金森病相关的临床和科学问题。这一奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(45)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
International Conference on Learning Representations 2020
2020 年学习表征国际会议
- DOI:
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Li, Y.;Fang, E. X.;Xu, H.;Zhao, T.
- 通讯作者:Zhao, T.
Homogeneity Structure Learning in Large-scale Panel Data with Heavy-tailed Errors
- DOI:
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Xiao Di;Y. Ke;Runze Li
- 通讯作者:Xiao Di;Y. Ke;Runze Li
Covariate Information Number for Feature Screening in Ultrahigh-Dimensional Supervised Problems.
- DOI:10.1080/01621459.2020.1864380
- 发表时间:2022
- 期刊:
- 影响因子:3.7
- 作者:Nandy, Debmalya;Chiaromonte, Francesca;Li, Runze
- 通讯作者:Li, Runze
An overview of tests on high-dimensional means
- DOI:10.1016/j.jmva.2021.104813
- 发表时间:2021-09
- 期刊:
- 影响因子:0
- 作者:Yuan Huang;Changcheng Li;Runze Li;Songshan Yang
- 通讯作者:Yuan Huang;Changcheng Li;Runze Li;Songshan Yang
Multiple-splitting project test for high dimensional mean vectors
高维均值向量的多重分裂项目检验
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:6
- 作者:Liu, Wanjun;Yu, Xiufan;Li, Runze
- 通讯作者:Li, Runze
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Runze Li其他文献
Integrating Hybrid Pyramid Feature Fusion and Coordinate Attention for Effective Small Sample Hyperspectral Image Classification
集成混合金字塔特征融合和协调注意力以实现有效的小样本高光谱图像分类
- DOI:
10.3390/rs14102355 - 发表时间:
2022-05 - 期刊:
- 影响因子:5
- 作者:
Chen Ding;Youfa Chen;Runze Li;Dushi Wen;Xiaoyan Xie;Lei Zhang;Wei Wei;Yanning Zhang - 通讯作者:
Yanning Zhang
Spectral analysis and power spectral density evaluation in Al2O3 nanofluid minimum quantity lubrication milling of 45 steel
45钢Al2O3纳米流体微量润滑铣削的谱分析及功率谱密度评价
- DOI:
10.1007/s00170-018-1942-9 - 发表时间:
2018-03 - 期刊:
- 影响因子:0
- 作者:
Qingan Yin;Changhe Li;Yanbin Zhang;Min Yang;Dongzhou Jia;Yali Hou;Runze Li;Lan Dong - 通讯作者:
Lan Dong
Physically Interpretable Feature Learning of Supercritical Airfoils Based on Variational Autoencoders
基于变分自动编码器的超临界翼型的物理可解释特征学习
- DOI:
10.2514/1.j061673 - 发表时间:
2022 - 期刊:
- 影响因子:2.5
- 作者:
Runze Li;Yufei Zhang;Haixin Chen - 通讯作者:
Haixin Chen
Multiple Multi-Scale Neural Networks Knowledge Transfer and Integration for Accurate Pixel-Level Retinal Blood Vessel Segmentation
多个多尺度神经网络知识转移和集成,实现精确的像素级视网膜血管分割
- DOI:
10.3390/app112411907 - 发表时间:
2021-12 - 期刊:
- 影响因子:0
- 作者:
Chen Ding;Runze Li;Zhouyi Zheng;Youfa Chen;Dushi Wen;Lei Zhang;Wei Wei;Yanning Zhang - 通讯作者:
Yanning Zhang
MODEL SELECTION FOR ANALYSIS OF UNIFORM DESIGN AND COMPUTER EXPERIMENT
- DOI:
10.1142/s0218539302000901 - 发表时间:
2002-12 - 期刊:
- 影响因子:0
- 作者:
Runze Li - 通讯作者:
Runze Li
Runze Li的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Runze Li', 18)}}的其他基金
Collaborative Research: High-Dimensional Projection Tests and Related Topics
合作研究:高维投影测试及相关主题
- 批准号:
1512422 - 财政年份:2015
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
The First Institute of Mathematical Statistics Asia Pacific Rim Meetings
第一届数理统计研究所环亚太会议
- 批准号:
0855596 - 财政年份:2009
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
CAMLET: A Combined Ab-initio Manifold Learning Toolbox for Nanostructure Simulations
CAMLET:用于纳米结构模拟的组合从头算流形学习工具箱
- 批准号:
0430349 - 财政年份:2004
- 资助金额:
$ 35万 - 项目类别:
Continuing Grant
CAREER: Model Selection for Semiparametric Regression Models in High Dimensional Modeling and its Oracle Properties
职业:高维建模中半参数回归模型的模型选择及其 Oracle 属性
- 批准号:
0348869 - 财政年份:2004
- 资助金额:
$ 35万 - 项目类别:
Continuing Grant
Variable Selection in High-Dimensional Modeling and Its Oracle Properties
高维建模中的变量选择及其预言属性
- 批准号:
0102505 - 财政年份:2001
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
相似海外基金
Development of noise-robust statistical anomaly detection procedures for condition-based maintenance
开发基于状态的维护的抗噪声统计异常检测程序
- 批准号:
21K14372 - 财政年份:2021
- 资助金额:
$ 35万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Statistical Procedures and Performance Measures for Simulator-Based Frequentist Inference
基于模拟器的频率推理的统计程序和性能测量
- 批准号:
2053804 - 财政年份:2021
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
Statistical assessment of group screening procedures
群体筛选程序的统计评估
- 批准号:
561880-2021 - 财政年份:2021
- 资助金额:
$ 35万 - 项目类别:
University Undergraduate Student Research Awards
Statistical procedures based on odds ratios
基于比值比的统计程序
- 批准号:
18K18008 - 财政年份:2018
- 资助金额:
$ 35万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
On Conditional Statistical Procedures for Simultaneous Model Selection, Inference, and Prediction in Complex Climate Systems
复杂气候系统中同时模型选择、推理和预测的条件统计程序
- 批准号:
1622483 - 财政年份:2016
- 资助金额:
$ 35万 - 项目类别:
Continuing Grant
"Bootstrap, confidence sets, and asymptotic analysis for some procedures of statistical inference"
“一些统计推断过程的引导、置信集和渐近分析”
- 批准号:
261347-2012 - 财政年份:2016
- 资助金额:
$ 35万 - 项目类别:
Discovery Grants Program - Individual
Collaborative Research: Novel and Unified Statistical Learning Procedures for Massive Dynamic Multiple-Input, Multiple-Output Networks
协作研究:大规模动态多输入多输出网络的新颖且统一的统计学习程序
- 批准号:
1521761 - 财政年份:2015
- 资助金额:
$ 35万 - 项目类别:
Continuing Grant
"Bootstrap, confidence sets, and asymptotic analysis for some procedures of statistical inference"
“一些统计推断过程的引导、置信集和渐近分析”
- 批准号:
261347-2012 - 财政年份:2015
- 资助金额:
$ 35万 - 项目类别:
Discovery Grants Program - Individual
Statistical Methods for Model Diagnosis and Robust Statistical Procedures under Model Misspecification
模型诊断的统计方法和模型错误指定下的稳健统计程序
- 批准号:
436110-2013 - 财政年份:2015
- 资助金额:
$ 35万 - 项目类别:
Discovery Grants Program - Individual
Collaborative Research: Novel and Unified Statistical Learning Procedures for Massive Dynamic Multiple-Input, Multiple-Output Networks
协作研究:大规模动态多输入多输出网络的新颖且统一的统计学习程序
- 批准号:
1521746 - 财政年份:2015
- 资助金额:
$ 35万 - 项目类别:
Continuing Grant














{{item.name}}会员




