Variable Selection in High-Dimensional Modeling and Its Oracle Properties

高维建模中的变量选择及其预言属性

基本信息

  • 批准号:
    0102505
  • 负责人:
  • 金额:
    $ 9.68万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2001
  • 资助国家:
    美国
  • 起止时间:
    2001-07-01 至 2005-05-31
  • 项目状态:
    已结题

项目摘要

High-dimensional data, such as, biotech and genetic data, financial data, satellite imagery and hyper-spectral imagery, are commonplace in our daily life. Indeed, high-dimensional data analysis has become an important research topic in statistics. Variable selection is fundamental to high-dimensional statistical modeling. Many approaches currently in use are stepwise selection procedures, which are expensive in computation and ignore stochastic errors in the stage of selection process. This research involves a variety of data-analytic techniques for developing a unified effective variable selection procedure in high-dimensional statistical modeling. The goal of this project is to significantly enhance the availability of tools for analyzing complicated high-dimensional data.In this project, penalized least squares and a penalized likelihood approach are proposed to select significant variables for various models used in high-dimensional data analysis. The proposed approach is distinguished from others since it deletes insignificant covariates by estimating their coefficients to be zero. In the other words, it simultaneously selects significant variables and estimates their regression coefficients, and thereby enables one to construct confidence intervals for the estimated parameters. An algorithm is proposed for finding solutions to optimization problems involved in the penalized least squares and penalized likelihood. The rates of convergence and the sampling properties of the resulting estimators are investigated and presented.
高维数据,如生物技术和遗传数据、金融数据、卫星图像和超光谱图像,在我们的日常生活中是司空见惯的。 事实上,高维数据分析已经成为统计学中的一个重要研究课题。 变量选择是高维统计建模的基础。 目前使用的许多方法是逐步选择过程,这是昂贵的计算和忽略随机误差的选择过程中的阶段。本研究涉及各种数据分析技术,以开发一个统一的有效的变量选择程序,在高维统计建模。本计画的目标是大幅提升分析复杂高维资料的工具的可用性,在本计画中,提出惩罚最小二乘法与惩罚似然法,以选择高维资料分析中各种模型的重要变数。所提出的方法是有别于其他,因为它删除了不重要的协变量估计其系数为零。 换句话说,它同时选择重要变量并估计其回归系数,从而使人们能够构建估计参数的置信区间。 提出了一种求解惩罚最小二乘和惩罚似然优化问题的算法。的收敛速度和抽样特性的估计进行了调查和介绍。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Runze Li其他文献

Spectral analysis and power spectral density evaluation in Al2O3 nanofluid minimum quantity lubrication milling of 45 steel
45钢Al2O3纳米流体微量润滑铣削的谱分析及功率谱密度评价
Multiple Multi-Scale Neural Networks Knowledge Transfer and Integration for Accurate Pixel-Level Retinal Blood Vessel Segmentation
多个多尺度神经网络知识转移和集成,实现精确的像素级视网膜血管分割
  • DOI:
    10.3390/app112411907
  • 发表时间:
    2021-12
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Chen Ding;Runze Li;Zhouyi Zheng;Youfa Chen;Dushi Wen;Lei Zhang;Wei Wei;Yanning Zhang
  • 通讯作者:
    Yanning Zhang
MODEL SELECTION FOR ANALYSIS OF UNIFORM DESIGN AND COMPUTER EXPERIMENT
Physically Interpretable Feature Learning of Supercritical Airfoils Based on Variational Autoencoders
基于变分自动编码器的超临界翼型的物理可解释特征学习
  • DOI:
    10.2514/1.j061673
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    Runze Li;Yufei Zhang;Haixin Chen
  • 通讯作者:
    Haixin Chen
Integrating Hybrid Pyramid Feature Fusion and Coordinate Attention for Effective Small Sample Hyperspectral Image Classification
集成混合金字塔特征融合和协调注意力以实现有效的小样本高光谱图像分类
  • DOI:
    10.3390/rs14102355
  • 发表时间:
    2022-05
  • 期刊:
  • 影响因子:
    5
  • 作者:
    Chen Ding;Youfa Chen;Runze Li;Dushi Wen;Xiaoyan Xie;Lei Zhang;Wei Wei;Yanning Zhang
  • 通讯作者:
    Yanning Zhang

Runze Li的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Runze Li', 18)}}的其他基金

Optimization and Statistical Procedures for Big Data and Applications
大数据及其应用的优化和统计程序
  • 批准号:
    1820702
  • 财政年份:
    2018
  • 资助金额:
    $ 9.68万
  • 项目类别:
    Continuing Grant
Collaborative Research: High-Dimensional Projection Tests and Related Topics
合作研究:高维投影测试及相关主题
  • 批准号:
    1512422
  • 财政年份:
    2015
  • 资助金额:
    $ 9.68万
  • 项目类别:
    Standard Grant
The First Institute of Mathematical Statistics Asia Pacific Rim Meetings
第一届数理统计研究所环亚太会议
  • 批准号:
    0855596
  • 财政年份:
    2009
  • 资助金额:
    $ 9.68万
  • 项目类别:
    Standard Grant
CAMLET: A Combined Ab-initio Manifold Learning Toolbox for Nanostructure Simulations
CAMLET:用于纳米结构模拟的组合从头算流形学习工具箱
  • 批准号:
    0430349
  • 财政年份:
    2004
  • 资助金额:
    $ 9.68万
  • 项目类别:
    Continuing Grant
CAREER: Model Selection for Semiparametric Regression Models in High Dimensional Modeling and its Oracle Properties
职业:高维建模中半参数回归模型的模型选择及其 Oracle 属性
  • 批准号:
    0348869
  • 财政年份:
    2004
  • 资助金额:
    $ 9.68万
  • 项目类别:
    Continuing Grant

相似国自然基金

Intelligent Patent Analysis for Optimized Technology Stack Selection:Blockchain BusinessRegistry Case Demonstration
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国学者研究基金项目
连锁群选育法(Linkage Group Selection)在柔嫩艾美耳球虫表型相关基因研究中应用
  • 批准号:
    30700601
  • 批准年份:
    2007
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Variable Selection and Prediction for High-Dimensional Genetic Data with Complex Structures
复杂结构高维遗传数据的变量选择与预测
  • 批准号:
    RGPIN-2020-05133
  • 财政年份:
    2022
  • 资助金额:
    $ 9.68万
  • 项目类别:
    Discovery Grants Program - Individual
Variable Selection and Prediction for High-Dimensional Genetic Data with Complex Structures
复杂结构高维遗传数据的变量选择与预测
  • 批准号:
    RGPIN-2020-05133
  • 财政年份:
    2021
  • 资助金额:
    $ 9.68万
  • 项目类别:
    Discovery Grants Program - Individual
Variable Selection and Prediction for High-Dimensional Genetic Data with Complex Structures
复杂结构高维遗传数据的变量选择与预测
  • 批准号:
    RGPIN-2020-05133
  • 财政年份:
    2020
  • 资助金额:
    $ 9.68万
  • 项目类别:
    Discovery Grants Program - Individual
Bayesian variable selection in high-dimensional latent variable models
高维潜变量模型中的贝叶斯变量选择
  • 批准号:
    2467837
  • 财政年份:
    2020
  • 资助金额:
    $ 9.68万
  • 项目类别:
    Studentship
Variable Selection and Prediction for High-Dimensional Genetic Data with Complex Structures
复杂结构高维遗传数据的变量选择与预测
  • 批准号:
    DGECR-2020-00344
  • 财政年份:
    2020
  • 资助金额:
    $ 9.68万
  • 项目类别:
    Discovery Launch Supplement
A fast and simple consistent variable selection method for high-dimensional multivariate data
一种快速简单的高维多元数据一致变量选择方法
  • 批准号:
    18K03415
  • 财政年份:
    2018
  • 资助金额:
    $ 9.68万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Collaborative proposal: Variable Selection in the high dimensional, low sample size setting -- Beyond the Linear Regression and Normal Errors Model
协作提案:高维、低样本量设置中的变量选择——超越线性回归和正态误差模型
  • 批准号:
    1612625
  • 财政年份:
    2016
  • 资助金额:
    $ 9.68万
  • 项目类别:
    Standard Grant
Collaborative proposal: Variable Selection in the high dimensional, low sample size setting -- Beyond the Linear Regression and Normal Errors Model
协作提案:高维、低样本量设置中的变量选择——超越线性回归和正态误差模型
  • 批准号:
    1611893
  • 财政年份:
    2016
  • 资助金额:
    $ 9.68万
  • 项目类别:
    Standard Grant
Variable selection methods in high-dimensional multivariate models and their applications
高维多元模型中的变量选择方法及其应用
  • 批准号:
    16K00047
  • 财政年份:
    2016
  • 资助金额:
    $ 9.68万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Multivariate normality test, and inference for variable selection in high-dimensional model and its applications
多元正态性检验、高维模型变量选择推理及其应用
  • 批准号:
    15K15953
  • 财政年份:
    2015
  • 资助金额:
    $ 9.68万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了