RAPID: Optimal allocation of both non-pharmaceutical and pharmaceutical interventions toward controlling Ebola virus transmission in West Africa

RAPID:非药物和药物干预措施的优化分配,以控制西非埃博拉病毒的传播

基本信息

  • 批准号:
    1514673
  • 负责人:
  • 金额:
    $ 19.99万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-12-15 至 2016-02-29
  • 项目状态:
    已结题

项目摘要

This research will evaluate the success of various pharmaceutical and public health strategies in the 2014 West Africa Ebola outbreak in order to most effectively control and reduce the spread of disease. The investigators will develop a mathematical model that considers variability in a person?s infectiousness, the variation in transmission that occurs in a hospital or community setting, as well as the differences in transmission due to geography and spatial variation. This proposed tool will utilize current data from the outbreak in West Africa to accurately reflect the on-the-ground situation. Consequently, results from this research will provide immediately relevant and real-time information. The investigators are utilizing contact tracing data collected by the Liberian Ministry of Health and Social Welfare. This dataset of 1360 cases and 7400 traced contacts from the current outbreak will be used to parameterize the model. The data will provide information on individual behavior changes in response to disease spread, between-community movement and self-quarantining measures. Pharmaceutical data including experimental vaccines, as well as community based antiviral therapies such as ZMapp and favipiravir will be evaluated in the model. The following non-pharmaceutical public health interventions will be evaluated in the model: quantity of public health personnel and ambulance services, magnitude of treatment center capacity, and the allocation and efficacy of household protective kits. This tool will offer important information to public health professionals to assist them in making critical decisions on resource allocation in order to maximize impact and public health outcomes.
这项研究将评估2014年西非埃博拉疫情中各种药物和公共卫生战略的成功,以最有效地控制和减少疾病的传播。研究人员将开发一个数学模型,考虑到一个人的变化?的传染性,在医院或社区环境中发生的传播的变化,以及由于地理和空间变化引起的传播差异。这一拟议工具将利用西非疫情的现有数据,准确反映实地情况。因此,这项研究的结果将提供即时相关和实时的信息。调查人员正在利用利比里亚卫生和社会福利部收集的接触者追踪数据。该数据集包含来自当前疫情的1360例病例和7400例追踪接触者,将用于参数化模型。这些数据将提供有关个人行为变化的信息,以应对疾病传播、社区间流动和自我克制措施。将在模型中评估药物数据,包括实验性疫苗以及基于社区的抗病毒疗法,如ZMapp和法匹拉韦。该模型将评估以下非药物公共卫生干预措施:公共卫生人员和救护车服务的数量、治疗中心的能力大小以及家庭防护包的分配和功效。这一工具将为公共卫生专业人员提供重要信息,协助他们就资源分配作出重要决定,以最大限度地扩大影响和公共卫生成果。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Alison Galvani其他文献

% OF ANYTHING LOOKS GOOD”—THE APPEAL OF ONE HUNDRED PERCENT AND THE PSYCHOLOGY OF VACCINATION
一切看起来不错的百分比”——百分百的吸引力和疫苗接种的心理学
  • DOI:
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Meng Li;Gretchen B. Chapman;LI Meng;Thesis Director;Gretchen B. Chapman;Alison Galvani;Bertrand Russell
  • 通讯作者:
    Bertrand Russell
An epidemic model structured by the time since last infection
自上次感染以来的时间构建的流行病模型
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zhilan Feng;G. Buzzard;Nung Kwan;Aaron Yip;John Glasser;G. Buzzard;Aaron Nung Kwan;Odo Diekmann;Alison Galvani;K. Hadeler;Wenzhang Huang;M. Iannelli;Knut Kiel;Suzanne Lenhart;P. Magal;A. Mubayi;Fabio A. Milner;Andrea Pugliese;Timothy C. Reluga;Sebastian Schreiber;Robert Smith;Sherry Towers;Kenneth Kellner
  • 通讯作者:
    Kenneth Kellner

Alison Galvani的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Alison Galvani', 18)}}的其他基金

RAPID: Curbing the COVID-19 outbreak in the United States
RAPID:遏制美国的 COVID-19 疫情
  • 批准号:
    2027755
  • 财政年份:
    2020
  • 资助金额:
    $ 19.99万
  • 项目类别:
    Standard Grant
Expeditions: Collaborative Research: Global Pervasive Computational Epidemiology
探险:合作研究:全球普适计算流行病学
  • 批准号:
    1918784
  • 财政年份:
    2020
  • 资助金额:
    $ 19.99万
  • 项目类别:
    Continuing Grant
Collaborative Research: Signaling Prosociality: Harnessing Impure Motives to Help Others
合作研究:发出亲社会信号:利用不纯粹的动机帮助他人
  • 批准号:
    1529983
  • 财政年份:
    2015
  • 资助金额:
    $ 19.99万
  • 项目类别:
    Standard Grant
COLLABORATIVE RESEARCH: Cross-national differences in vaccination as unselfish behavior
合作研究:疫苗接种方面的跨国差异是无私行为
  • 批准号:
    1227390
  • 财政年份:
    2012
  • 资助金额:
    $ 19.99万
  • 项目类别:
    Standard Grant
Collaborative Research: Dynamic Risk Perceptions about Mexican Swine Flu
合作研究:对墨西哥猪流感的动态风险认知
  • 批准号:
    0940018
  • 财政年份:
    2009
  • 资助金额:
    $ 19.99万
  • 项目类别:
    Standard Grant
Collaborative Research: Modeling and Behavioral Evaluation of Social Dynamics in Prevention Decisions
合作研究:预防决策中社会动态的建模和行为评估
  • 批准号:
    0624117
  • 财政年份:
    2007
  • 资助金额:
    $ 19.99万
  • 项目类别:
    Standard Grant

相似海外基金

VIPCare: Virtual Predictive Care workflow with integrated surveillance for optimal care protocol selection and management in at-risk prostate cancer patients
VIPCare:虚拟预测护理工作流程,具有综合监测功能,可为高危前列腺癌患者提供最佳护理方案选择和管理
  • 批准号:
    10758350
  • 财政年份:
    2023
  • 资助金额:
    $ 19.99万
  • 项目类别:
RAPID: Identifying the Drivers of Optimal COVID-19 Allocation
RAPID:确定最佳 COVID-19 分配的驱动因素
  • 批准号:
    2138192
  • 财政年份:
    2022
  • 资助金额:
    $ 19.99万
  • 项目类别:
    Standard Grant
Optimal Provisioning and Fair Allocation of Resources in Cloud Computing Data Centers
云计算数据中心资源的优化配置和公平分配
  • 批准号:
    RGPIN-2020-07158
  • 财政年份:
    2022
  • 资助金额:
    $ 19.99万
  • 项目类别:
    Discovery Grants Program - Individual
Can optimal energy allocation in bioenergetic models improve predictions?
生物能模型中的最佳能量分配可以改善预测吗?
  • 批准号:
    2052246
  • 财政年份:
    2021
  • 资助金额:
    $ 19.99万
  • 项目类别:
    Standard Grant
Geographic Determinants of Atrial Fibrillation and an Integer Programming Model for Optimal Resource Allocation in Ontario, Canada
加拿大安大略省心房颤动的地理决定因素和优化资源分配的整数规划模型
  • 批准号:
    467205
  • 财政年份:
    2021
  • 资助金额:
    $ 19.99万
  • 项目类别:
    Studentship Programs
Optimal Provisioning and Fair Allocation of Resources in Cloud Computing Data Centers
云计算数据中心资源的优化配置和公平分配
  • 批准号:
    RGPIN-2020-07158
  • 财政年份:
    2021
  • 资助金额:
    $ 19.99万
  • 项目类别:
    Discovery Grants Program - Individual
Implementable optimal resource allocation and stopping theory in stochastic numerical analysis
随机数值分析中可实现的最优资源分配和停止理论
  • 批准号:
    21K03347
  • 财政年份:
    2021
  • 资助金额:
    $ 19.99万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Optimal resource allocation and technology adoption in dynamic systems
动态系统中的最优资源分配和技术采用
  • 批准号:
    RGPIN-2020-06665
  • 财政年份:
    2021
  • 资助金额:
    $ 19.99万
  • 项目类别:
    Discovery Grants Program - Individual
RAPID: Optimal allocation of COVID-19 testing based on context-specific outbreak control objectives
RAPID:根据具体情况的疫情控制目标优化 COVID-19 检测分配
  • 批准号:
    2037885
  • 财政年份:
    2020
  • 资助金额:
    $ 19.99万
  • 项目类别:
    Standard Grant
Optimal resource allocation and technology adoption in dynamic systems
动态系统中的最优资源分配和技术采用
  • 批准号:
    RGPIN-2020-06665
  • 财政年份:
    2020
  • 资助金额:
    $ 19.99万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了