EAPSI:Understanding and Controlling the Properties of Magnetic Semiconductor Nanomaterials based on Europium

EAPSI:了解和控制基于铕的磁性半导体纳米材料的特性

基本信息

  • 批准号:
    1515396
  • 负责人:
  • 金额:
    $ 0.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Fellowship Award
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-06-01 至 2016-05-31
  • 项目状态:
    已结题

项目摘要

The next generation of electronic devices rests upon two advances in the materials used in their construction: new materials with novel properties and shrinking devices to the nanoscale. Magnetic semiconductors are an exciting but poorly-understood class of materials that display a number of interesting effects desirable for modern electronics applications. In these materials, the electronic, optical, and magnetic properties are highly coupled, leading to a strong interdependence among them. This interdependence allows for control of all of these properties based upon changes in only one. For example, when in a magnetized state, these materials exhibit a large change in their electrical resistance or interaction with polarized light. Understanding how to make these materials and how to control the properties on the nanoscale is an important first step in harnessing them for use in devices from displays to hard drives to processors and quantum computers.For understanding the fundamental properties of magnetic semiconductor nanomaterials, an excellent model system is the europium chalcogenides: oxide (EuO), sulfide (EuS), selenide (EuSe), and telluride (EuTe). All of these materials are indirect bandgap semiconductors that display a range of magnetic behavior from ferromagnetic in EuO and EuS to metamagnetic in EuSe to antiferromagnetic in EuTe. Recently, nanostructures of the europum chalcogenides have been synthesized by the PI?s home research group at Georgetown University and the research group of Yasuchika Hasegawa at Hokkaido University, where the PI will work under this award. These nanostructures are an ideal platform to study the fundamental behavior and coupling exhibited on the nanoscale. Toward this understanding, this project will investigate the synthesis and characterization of cation and anion doped EuS and EuSe nanostructures as a means to control electronic, optical, and magnetic properties by controlling composition. This NSF EAPSI award is funded in collaboration with the Japan Society for the Promotion of Science.
下一代电子设备依赖于其结构中所用材料的两个进步:具有新特性的新材料和将设备缩小到纳米级。磁性半导体是一种令人兴奋但理解甚少的材料,它显示出许多现代电子应用所需的有趣效应。在这些材料中,电子,光学和磁性是高度耦合的,导致它们之间的相互依赖性很强。这种相互依赖性允许基于仅一个属性的变化来控制所有这些属性。例如,当处于磁化状态时,这些材料在其电阻或与偏振光的相互作用方面表现出很大的变化。了解如何制造这些材料以及如何在纳米尺度上控制这些材料的特性是将它们用于从显示器到硬盘驱动器到处理器和量子计算机的设备的重要的第一步。为了了解磁性半导体纳米材料的基本特性,一个很好的模型系统是铕硫属化物:氧化物(EuO),硫化物(EuS),硒化物(EuSe)和碲化物(EuTe)。所有这些材料都是间接带隙半导体,显示出从EuO和EuS中的铁磁性到EuSe中的变磁性到EuTe中的反铁磁性的一系列磁性行为。最近,纳米结构的europum硫族化合物已合成的PI?他的家庭研究小组在乔治敦大学和研究小组在北海道大学的长谷川康亲,在那里PI将根据这项奖励工作。这些纳米结构是研究纳米尺度上的基本行为和耦合的理想平台。为了理解这一点,该项目将研究阳离子和阴离子掺杂的EuS和EuSe纳米结构的合成和表征,作为通过控制组成来控制电子、光学和磁性的手段。这个NSF EAPSI奖是与日本科学促进协会合作资助的。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Nicholas Rosa其他文献

Cinder: keeping crystallographers app-y.
Cinder:让晶体学家保持专注。

Nicholas Rosa的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

Understanding structural evolution of galaxies with machine learning
  • 批准号:
    n/a
  • 批准年份:
    2022
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
Understanding complicated gravitational physics by simple two-shell systems
  • 批准号:
    12005059
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Understanding and Controlling Structure in Metal Ion-Linked Multilayer Upconversion Solar Cells
了解和控制金属离子连接多层上转换太阳能电池的结构
  • 批准号:
    2327754
  • 财政年份:
    2024
  • 资助金额:
    $ 0.5万
  • 项目类别:
    Standard Grant
GOALI: Understanding the Physical Mechanisms of Distortion and Controlling its Effects in Sintering-based Additive Manufacturing Processes
目标:了解变形的物理机制并控制其在基于烧结的增材制造工艺中的影响
  • 批准号:
    2328678
  • 财政年份:
    2024
  • 资助金额:
    $ 0.5万
  • 项目类别:
    Standard Grant
CAREER: Understanding and controlling the sintering of metal powders with nanoscale additives
职业:了解和控制纳米级添加剂金属粉末的烧结
  • 批准号:
    2340688
  • 财政年份:
    2024
  • 资助金额:
    $ 0.5万
  • 项目类别:
    Continuing Grant
Understanding, Predicting and Controlling AI Hallucination in Diffusion Models for Image Inverse Problems
理解、预测和控制图像逆问题扩散模型中的 AI 幻觉
  • 批准号:
    2906295
  • 财政年份:
    2024
  • 资助金额:
    $ 0.5万
  • 项目类别:
    Studentship
Collaborative Research: Understanding and controlling force generation by a centrin-based contractile system
合作研究:理解和控制基于中心蛋白的收缩系统产生的力
  • 批准号:
    2313727
  • 财政年份:
    2023
  • 资助金额:
    $ 0.5万
  • 项目类别:
    Continuing Grant
Collaborative Research: Understanding and controlling force generation by a centrin-based contractile system
合作研究:理解和控制基于中心蛋白的收缩系统产生的力
  • 批准号:
    2313726
  • 财政年份:
    2023
  • 资助金额:
    $ 0.5万
  • 项目类别:
    Continuing Grant
Understanding and Controlling Magnetic Two-Dimensional Crystals
理解和控制磁性二维晶体
  • 批准号:
    2326944
  • 财政年份:
    2023
  • 资助金额:
    $ 0.5万
  • 项目类别:
    Standard Grant
Toward a Better Understanding of Factors Controlling Selectivity in Deoxy Sugar Oligosaccharide Synthesis
更好地了解控制脱氧低聚糖合成选择性的因素
  • 批准号:
    2246963
  • 财政年份:
    2023
  • 资助金额:
    $ 0.5万
  • 项目类别:
    Continuing Grant
Understanding and controlling neuropeptide GPCR-transducer coupling
了解和控制神经肽 GPCR-传感器耦合
  • 批准号:
    FT220100617
  • 财政年份:
    2023
  • 资助金额:
    $ 0.5万
  • 项目类别:
    ARC Future Fellowships
Understanding and controlling autistic learners' engagement fluctuations through a technology-mediated learning environment
通过技术介导的学习环境理解和控制自闭症学习者的参与波动
  • 批准号:
    23K12810
  • 财政年份:
    2023
  • 资助金额:
    $ 0.5万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了