Modeling Steep Surface Waves Evolving Under Wind Forcing and Energy Dissipation Due to Wave Breaking
模拟在风力作用下演变的陡峭表面波以及由于波浪破碎导致的能量耗散
基本信息
- 批准号:1517456
- 负责人:
- 金额:$ 23.42万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-09-01 至 2018-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Ocean waves play an important role in many areas of science and engineering, notably climatology, meteorology, ocean environment, marine transport, and coastal engineering. They are generated by drawing energy from wind, evolve through nonlinear wave interactions, and are eventually dissipated by wave breaking. When fully developed, ocean waves have wavelengths that span scales from centimeters (capillary waves) to kilometers (tsunami). Computationally resolving models for ocean waves over such a wide range of spatial scales is an enormous challenge, and it is impractical to solve the full hydrodynamic equations over a large surface area of the ocean. These facts have produced an increasing interest in developing a novel and efficient computational tool that can simultaneously treat wind forcing, breaking wave dissipation, and nonlinear wave interactions. This research project aims to contribute to the development of such a tool. Once it is developed, the computational model would be useful for researchers working on physical oceanographic processes and climate change, because the transfer of energy and momentum across the air-sea boundary is fundamental to their work. A graduate student is involved in the project.To predict accurately the evolution of nonlinear surface waves, the investigator and his colleagues develop a reliable and efficient phase-resolving wave model combined with theoretical models of wave breaking and wind-wave interaction. Through numerical simulations using a pseudo-spectral method and controlled laboratory experiments, the predictive capability of the integrated wave model is examined for steep surface waves evolving under wind forcing. To achieve this goal, a robust breaking criterion is first determined though numerical simulations of the wave model and then is confirmed with laboratory experiments. Then, through viscous boundary layer analyses at the deformed surface of steep waves, the viscous energy dissipation rate and the air pressure distribution over the free surface, as well as a criterion of airflow separation, is identified in terms of local flow and wave characteristics. By coupling the results of the boundary layer analyses with measurements of wave breaking and wind-wave interaction experiments, the energy dissipation and wind forcing terms are determined and integrated into the wave prediction model. Finally, the resulting wave model is validated by comparing its numerical solutions with laboratory experiments.
海浪在科学和工程的许多领域中发挥着重要作用,特别是气候学,气象学,海洋环境,海洋运输和海岸工程。 它们通过从风中汲取能量而产生,通过非线性波浪相互作用而演变,并最终通过波浪破碎而消散。 当充分发展时,海浪的波长从厘米(毛细波)到公里(海啸)不等。 在如此宽的空间尺度范围内计算求解海浪模型是一个巨大的挑战,并且在海洋的大表面积上求解完整的流体动力学方程是不切实际的。 这些事实产生了越来越多的兴趣,开发一种新的和有效的计算工具,可以同时处理风强迫,破碎波耗散,和非线性波的相互作用。 该研究项目旨在为开发这样一种工具作出贡献。 一旦开发出来,计算模型将对从事物理海洋学过程和气候变化研究的研究人员有用,因为能量和动量跨越海气边界的转移对他们的工作至关重要。 为了准确预测非线性表面波的演变,研究人员和他的同事们开发了一个可靠而有效的相分辨波浪模型,结合了波浪破碎和风浪相互作用的理论模型。 通过使用伪谱方法和受控实验室实验的数值模拟,综合波模型的预测能力进行检查下风强迫陡峭的表面波演变。 为了实现这一目标,一个强大的破碎准则,首先确定通过数值模拟的波浪模型,然后与实验室实验确认。 然后,通过粘性边界层分析在陡峭的波浪变形的表面,粘性能量耗散率和空气压力分布在自由表面上,以及气流分离的标准,根据当地的流动和波浪的特性。 通过将边界层分析的结果与波浪破碎和风浪相互作用实验的测量结果相耦合,确定了能量耗散项和风强迫项,并将其集成到波浪预报模型中。 最后,通过将数值解与实验室试验结果进行比较,验证了所建立的波浪模型的有效性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Wooyoung Choi其他文献
Nonlinear concentric water waves of moderate amplitude
- DOI:
10.1016/j.wavemoti.2024.103295 - 发表时间:
2024-07-01 - 期刊:
- 影响因子:
- 作者:
Nerijus Sidorovas;Dmitri Tseluiko;Wooyoung Choi;Karima Khusnutdinova - 通讯作者:
Karima Khusnutdinova
Selective gas permeation through polymer-hybridized graphene oxide nanoribbon nanochannels: Towards enhanced Hsub2/sub/COsub2/sub selectivity
通过聚合物杂化氧化石墨烯纳米带纳米通道的选择性气体渗透:迈向增强的 H₂/CO₂ 选择性
- DOI:
10.1016/j.memsci.2023.121856 - 发表时间:
2023-10-05 - 期刊:
- 影响因子:9.000
- 作者:
Hyungjoon Ji;Yunkyu Choi;Wooyoung Choi;Eunji Choi;Minsu Kim;Ju Yeon Kim;Ohchan Kwon;Yunseong Ji;Dae Woo Kim - 通讯作者:
Dae Woo Kim
Synthesis , characterization , and antibacterial performance of Ag-modified graphene oxide reinforced electrospun polyurethane nanofibers
Ag修饰氧化石墨烯增强电纺聚氨酯纳米纤维的合成、表征及抗菌性能
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Bishweshwar Pant;Mira Park;R. Jang;Wooyoung Choi;H. Kim;Soojin Park - 通讯作者:
Soojin Park
Structural dynamics of human fatty acid synthase in the condensing cycle
人类脂肪酸合酶在缩合循环中的结构动力学
- DOI:
10.1038/s41586-025-08782-w - 发表时间:
2025-02-20 - 期刊:
- 影响因子:48.500
- 作者:
Wooyoung Choi;Chengmin Li;Yifei Chen;YongQiang Wang;Yifan Cheng - 通讯作者:
Yifan Cheng
Degradation of polycrystalline zeolitic imidazolate framework membrane under reactive plasma conditions
反应等离子体条件下多晶沸石咪唑酯骨架膜的降解
- DOI:
10.1016/j.memlet.2025.100093 - 发表时间:
2025-06-01 - 期刊:
- 影响因子:4.700
- 作者:
Hyungjoon Ji;Wooyoung Choi;Eunji Choi;Yunseong Ji;Minsu Kim;Hwan-Jin Jeon;Dae Woo Kim - 通讯作者:
Dae Woo Kim
Wooyoung Choi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Wooyoung Choi', 18)}}的其他基金
Nonlinear Resonant Wave Interactions in Density-Stratified Flows
密度分层流中的非线性共振波相互作用
- 批准号:
2108524 - 财政年份:2021
- 资助金额:
$ 23.42万 - 项目类别:
Standard Grant
Collaborative Research: Nonlinear Interactions between Surface and Internal Gravity Waves in the Ocean
合作研究:海洋表面重力波和内部重力波之间的非线性相互作用
- 批准号:
1634939 - 财政年份:2016
- 资助金额:
$ 23.42万 - 项目类别:
Standard Grant
CMG COLLABORATIVE RESEARCH: A Systematic Approach to Large Amplitude Internal Wave Dynamics: An Integrated Mathematical, Observational, and Remote Sensing Model
CMG 合作研究:大振幅内波动力学的系统方法:综合数学、观测和遥感模型
- 批准号:
0620832 - 财政年份:2006
- 资助金额:
$ 23.42万 - 项目类别:
Standard Grant
相似海外基金
CAREER: Investigating the impacts of sea breeze and steep surface gravity waves on nearshore air-sea fluxes
职业:研究海风和陡峭的表面重力波对近岸海气通量的影响
- 批准号:
2340712 - 财政年份:2024
- 资助金额:
$ 23.42万 - 项目类别:
Continuing Grant
Barley malting a steep learning curve
大麦麦芽的学习曲线陡峭
- 批准号:
BB/Y51360X/1 - 财政年份:2023
- 资助金额:
$ 23.42万 - 项目类别:
Training Grant
5P42ES027706 Sources, Transport, Exposure, and Effects of PFASs (STEEP) SRP
5P42ES027706 PFAS (STEEP) SRP 的来源、传输、暴露和影响
- 批准号:
10381901 - 财政年份:2021
- 资助金额:
$ 23.42万 - 项目类别:
P42ES027706 URI Sources, Transport, Exposure, and Effects of PFAS (STEEP) SRP
P42ES027706 PFAS (STEEP) SRP 的 URI 来源、传输、暴露和影响
- 批准号:
10399005 - 财政年份:2021
- 资助金额:
$ 23.42万 - 项目类别:
High biOdiversity of steep sloPe habitats in bay d'Espoir (HOPE)
埃斯普瓦湾 (HOPE) 陡坡栖息地的高生物多样性
- 批准号:
556543-2021 - 财政年份:2021
- 资助金额:
$ 23.42万 - 项目类别:
Discovery Grants Program - Ship Time
5P42ES027706 Sources, Transport, Exposure, and Effects of PFASs (STEEP) SRP
5P42ES027706 PFAS (STEEP) SRP 的来源、传输、暴露和影响
- 批准号:
10380984 - 财政年份:2021
- 资助金额:
$ 23.42万 - 项目类别:
How river bank side slopes and sediment size control failure in steep streams?
河岸边坡和沉积物尺寸如何控制陡峭溪流的破坏?
- 批准号:
553071-2020 - 财政年份:2020
- 资助金额:
$ 23.42万 - 项目类别:
University Undergraduate Student Research Awards
CAREER: Toward sub-60-mV/decade steep transistors using Dirac-source carrier injection and high-mobility 2D monochalcogenides
职业生涯:使用狄拉克源载流子注入和高迁移率二维单硫属化物实现低于 60 mV/十年陡峭的晶体管
- 批准号:
1944095 - 财政年份:2020
- 资助金额:
$ 23.42万 - 项目类别:
Continuing Grant
Investigation of steep-slope transistor using ferroelectric polarization dynamics
利用铁电极化动力学研究陡坡晶体管
- 批准号:
20H00240 - 财政年份:2020
- 资助金额:
$ 23.42万 - 项目类别:
Grant-in-Aid for Scientific Research (A)