Spectral Problems of Mathematical Physics Related to Novel Materials Science and Photonics

与新材料科学和光子学相关的数学物理谱问题

基本信息

  • 批准号:
    1517938
  • 负责人:
  • 金额:
    $ 22.45万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-09-01 至 2018-08-31
  • 项目状态:
    已结题

项目摘要

This research project is concerned with spectral theory of operators arising in mathematical physics -- in quantum mechanics, for example, the spectral values of appropriate operators give energy levels of associated quantum states. One witnesses the currently growing interest in studying various spectral theory issues of novel materials science. Such topics, known for a long time to be related to physical properties of metals and semiconductors, received a new boost due to the recent development of novel materials and metamaterials, such as graphene, topological insulators, carbon nanotubes, and photonic crystals, to name a few. Addressing these is the main thrust of this research. This project will lead to the development of techniques and results crucial for novel materials science, condensed matter physics, chemistry, and photonics. Graduate students will be involved and trained in this important interdisciplinary area of research. Running a series of international workshops on mathematics of novel materials science is also planned.The variety of interconnected problems approached can be grouped into four broad areas, the first concerning the Geometry of Dispersion Relations (DR) in periodic media. Here various issues such as existence and number spectral gaps, generic behavior and location of extrema of DR, irreducibility of DR, and existence of Dirac points will be addressed. All these problems are at the heart of understanding properties of metals and semiconductors, as well as novel materials such as 2D crystals (graphene, graphynes, etc.), topological insulators, and photonic crystals. The problem of overcoming the known topological obstacles to the existence of bases of Wannier functions (important for numerical computations) will be also attacked here. A second area to be addressed concerns threshold effects, which arise near and at the relevant edges of the spectrum. These include, in particular, precise asymptotics of Green's functions, homogenization, Liouville type properties, and design of materials slowing down light. The third area concerns thin structures and will address issues of modeling and properties of thin graph-like or surface-like structures. These arise naturally in modeling photonic crystals, photonic waveguides, quantum wires, and other applications. The fourth area is devoted to nodal patterns (Chladni figures) of Dirichlet and Neumann eigenfunctions.
本研究项目涉及数学物理中出现的算符的谱理论——例如,在量子力学中,适当算符的谱值给出了相关量子态的能级。人们对研究新材料科学的各种光谱理论问题越来越感兴趣。长期以来,这类主题一直被认为与金属和半导体的物理性质有关,由于最近新材料和超材料的发展,例如石墨烯、拓扑绝缘体、碳纳米管和光子晶体等,这些主题得到了新的推动。解决这些问题是本研究的主要目的。该项目将导致新材料科学、凝聚态物理、化学和光子学的关键技术和结果的发展。研究生将参与和培训这一重要的跨学科研究领域。还计划举办一系列关于新材料科学数学的国际研讨会。所涉及的各种相互关联的问题可以分为四个广泛的领域,第一个是关于周期性介质中色散关系的几何。本文将讨论谱隙的存在性和数量、DR的一般行为和极值的位置、DR的不可约性和Dirac点的存在性等问题。所有这些问题都是理解金属和半导体性质的核心,以及诸如二维晶体(石墨烯,石墨烯等),拓扑绝缘体和光子晶体等新材料。克服已知的万尼尔函数基存在的拓扑障碍(对数值计算很重要)的问题也将在这里讨论。第二个要处理的领域涉及阈值效应,它出现在光谱的相关边缘附近。其中特别包括格林函数的精确渐近性、均质化、刘维尔型性质和减慢光的材料设计。第三个领域涉及薄结构,并将解决薄图形或表面结构的建模和特性问题。在模拟光子晶体、光子波导、量子线和其他应用中自然会出现这些问题。第四个领域致力于狄利克雷和诺伊曼特征函数的节点模式(Chladni图形)。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Peter Kuchment其他文献

Peter Kuchment的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Peter Kuchment', 18)}}的其他基金

Spectral problems of mathematical physics and material science
数学物理和材料科学的光谱问题
  • 批准号:
    2007408
  • 财政年份:
    2020
  • 资助金额:
    $ 22.45万
  • 项目类别:
    Standard Grant
Inverse Problems for Biomedical Imaging and Homeland Security
生物医学成像和国土安全的反问题
  • 批准号:
    1816430
  • 财政年份:
    2018
  • 资助金额:
    $ 22.45万
  • 项目类别:
    Standard Grant
Collaborative research: Mathematics of emerging imaging methods in medicine and homeland security
合作研究:医学和国土安全中新兴成像方法的数学
  • 批准号:
    1211463
  • 财政年份:
    2012
  • 资助金额:
    $ 22.45万
  • 项目类别:
    Continuing Grant
Analysis on Graphs and its Applications: Follow-up Meeting
图分析及其应用:后续会议
  • 批准号:
    0963287
  • 财政年份:
    2010
  • 资助金额:
    $ 22.45万
  • 项目类别:
    Standard Grant
Collaborative Research: Mathematical Techniques for Emerging Methods in Biomedical Imaging
合作研究:生物医学成像新兴方法的数学技术
  • 批准号:
    0908208
  • 财政年份:
    2009
  • 资助金额:
    $ 22.45万
  • 项目类别:
    Standard Grant
SM: Graph Models in Nanotechnology, Photonics, Chemistry, and Other Areas
SM:纳米技术、光子学、化学和其他领域的图模型
  • 批准号:
    0648786
  • 财政年份:
    2007
  • 资助金额:
    $ 22.45万
  • 项目类别:
    Standard Grant
Mathematical Methods for Novel Modalities of Medical Imaging
医学成像新模式的数学方法
  • 批准号:
    0604778
  • 财政年份:
    2006
  • 资助金额:
    $ 22.45万
  • 项目类别:
    Standard Grant
Quantum Graphs and Their Applications
量子图及其应用
  • 批准号:
    0406022
  • 财政年份:
    2004
  • 资助金额:
    $ 22.45万
  • 项目类别:
    Standard Grant
Band-gap Materials, Mesoscopic Structures, and Related Topics
带隙材料、介观结构及相关主题
  • 批准号:
    0296150
  • 财政年份:
    2001
  • 资助金额:
    $ 22.45万
  • 项目类别:
    Standard Grant
Band-gap Materials, Mesoscopic Structures, and Related Topics
带隙材料、介观结构及相关主题
  • 批准号:
    0072248
  • 财政年份:
    2000
  • 资助金额:
    $ 22.45万
  • 项目类别:
    Standard Grant

相似海外基金

Spectral problems of mathematical physics and material science
数学物理和材料科学的光谱问题
  • 批准号:
    2007408
  • 财政年份:
    2020
  • 资助金额:
    $ 22.45万
  • 项目类别:
    Standard Grant
NSF/CBMS Regional Conference in the Mathematical Sciences, Using Spectral Data to Solve Inverse Problems, December 14-18, 2001
NSF/CBMS 数学科学区域会议,使用谱数据解决反问题,2001 年 12 月 14-18 日
  • 批准号:
    0085884
  • 财政年份:
    2001
  • 资助金额:
    $ 22.45万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Fast Spectral-Galerkin Algorithms for Elliptic Problems and Efficient Solution Techniques for Unsteady Navier-Stokes Equations
数学科学:椭圆问题的快速谱伽辽金算法和非定常纳维-斯托克斯方程的高效求解技术
  • 批准号:
    9623020
  • 财政年份:
    1996
  • 资助金额:
    $ 22.45万
  • 项目类别:
    Standard Grant
Mathematical Sciences: NSF/CBMS Regional Conference in the Mathematical Sciences--Spectral Problems in Geometry and Arithmetic--August18-22, 1997
数学科学:NSF/CBMS 数学科学区域会议——几何和算术中的谱问题——1997 年 8 月 18 日至 22 日
  • 批准号:
    9612075
  • 财政年份:
    1996
  • 资助金额:
    $ 22.45万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Inverse Spectral Problems and Meromorphic Solutions of Differential Equations
数学科学:反谱问题和微分方程的亚纯解
  • 批准号:
    9623121
  • 财政年份:
    1996
  • 资助金额:
    $ 22.45万
  • 项目类别:
    Standard Grant
Spectral and Asymptotoc Problems of Mathematical Physics
数学物理的谱和渐近问题
  • 批准号:
    9622730
  • 财政年份:
    1996
  • 资助金额:
    $ 22.45万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Spectral Problems and Inverse Spectral Problems
数学科学:谱问题和逆谱问题
  • 批准号:
    9500867
  • 财政年份:
    1995
  • 资助金额:
    $ 22.45万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Inverse Spectral Problems in Riemannian Geometry
数学科学:黎曼几何中的逆谱问题
  • 批准号:
    9404298
  • 财政年份:
    1994
  • 资助金额:
    $ 22.45万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Spectral and Symptotic Problems of Mathematical Physics
数学科学:数学物理的谱和症状问题
  • 批准号:
    9211624
  • 财政年份:
    1992
  • 资助金额:
    $ 22.45万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Inverse Spectral Problems in Riemannian Geometry
数学科学:黎曼几何中的逆谱问题
  • 批准号:
    9296266
  • 财政年份:
    1992
  • 资助金额:
    $ 22.45万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了