SM: Graph Models in Nanotechnology, Photonics, Chemistry, and Other Areas
SM:纳米技术、光子学、化学和其他领域的图模型
基本信息
- 批准号:0648786
- 负责人:
- 金额:$ 7万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-03-15 至 2008-02-29
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
KuchmentDMS-0648786 The series of a tutorial and three workshops is a part of asemester-long program at the Isaac Newton Institute forMathematical Sciences in Cambridge, UK. The program assembles alarge international group of mathematicians and physicistsinterested in graph models arising in widely disparate areas ofhigh practical and theoretical importance. Analysis on graphshas been developing very quickly in the last decades, due toneeds of number theory, algebra, probability theory, and spectralgeometry. This area has experienced recently a surge of newimportant applications, new methods, and new models. Newobjects, such as quantum graphs (quantum networks) ordifferential operators on fractals, have emerged, which providesimplified models of complex systems and help with studyingdifficult issues such as, for instance, Anderson localization andquantum chaos. All these developments have sparked the interestof experts in other areas of sciences and mathematics in analysison graphs and in the diversity of methods employed. The programstarts with a tutorial workshop where young researchers andstudents are introduced to the basics of analysis on graphs,quantum graphs, and fractals. Then two workshops follow devotedto spectral analysis and quantum chaos on quantum graphs andgraph models for nanotechnology, chemistry, optics,microelectronics, and other areas. The third workshop addressesalgebraic aspects of analysis on graphs and fractals. Besidesworkshop participation, longer term visits of both establishedand young researchers are arranged. Analysis on graphs has experienced sharp growth in recentyears, due to many new applications that sweep throughout a widescientific landscape: computer graphics, information technology,Internet studies, nanotechnology, microelectronics,superconductivity, optics, chemistry, and material science. Researchers in these areas meet problems that are similar tothose faced by mathematicians in areas like number theory,combinatorics, differential equations, and spectral theory. Theprogram facilitates the urgently needed communication andcooperation among researchers in different areas of mathematicsand sciences. It thus accelerates progress in this new area thathas extensive applications in crucial scientific and technologyfields, such as nanotechnology, photonics, and material science. It alsos help to increase participation and visibility of USresearchers in these fields. Significant training for juniorresearchers and graduate students is provided, includingspecially designed tutorials, seminars, and open problemssessions. A proceedings volume is planned to be published. Thegrant supports US-based participants in the program, mostly USstudents, postdocs, junior faculty, women, and otherunderrepresented groups.
KuchentDMS-0648786这一系列的教程和三个研讨会是英国剑桥艾萨克·牛顿数学科学研究所一个为期一个月的项目的一部分。该计划汇集了一大批对图形模型感兴趣的国际数学家和物理学家,这些图形模型出现在具有高度实践和理论重要性的广泛不同的领域。在过去的几十年里,由于数论、代数、概率论和谱几何的需要,对图形的分析得到了迅速的发展。这一领域最近经历了大量新的重要应用、新方法和新模式.出现了新的对象,如量子图(量子网络)或分数上的微分算子,它们提供了复杂系统的简化模型,并有助于研究困难的问题,如Anderson局部化和量子混沌。所有这些发展都激发了其他科学和数学领域的专家对分析图表和所用方法的多样性的兴趣。该计划从一个辅导工作坊开始,在那里年轻的研究人员和学生被介绍关于图形、量子图形和分形图的基本分析。随后的两个研讨会致力于在纳米技术、化学、光学、微电子和其他领域的量子图形和图形模型上进行频谱分析和量子混沌。第三堂课讨论图形和分形图分析的代数方面。除了参加研讨会外,还安排了知名研究人员和年轻研究人员的长期访问。近年来,由于许多新的应用席卷了广泛的领域:计算机图形学、信息技术、互联网研究、纳米技术、微电子学、超导、光学、化学和材料科学,图形分析经历了急剧的增长。这些领域的研究人员遇到的问题与数学家在数论、组合学、微分方程式和谱论等领域所面临的问题类似。该计划促进了数学和科学领域不同领域的研究人员之间迫切需要的交流与合作。因此,它加速了这一新领域的进展,这一领域在纳米技术、光子学和材料科学等关键科学技术领域得到了广泛应用。它还有助于提高美国研究人员在这些领域的参与度和知名度。为初级研究人员和研究生提供了重要的培训,包括专门设计的教程、研讨会和开放问题会议。计划出版一本论文集。该赠款支持该项目的美国参与者,主要是美国学生、博士后、初级教师、女性和其他代表性不足的群体。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Peter Kuchment其他文献
Peter Kuchment的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Peter Kuchment', 18)}}的其他基金
Spectral problems of mathematical physics and material science
数学物理和材料科学的光谱问题
- 批准号:
2007408 - 财政年份:2020
- 资助金额:
$ 7万 - 项目类别:
Standard Grant
Inverse Problems for Biomedical Imaging and Homeland Security
生物医学成像和国土安全的反问题
- 批准号:
1816430 - 财政年份:2018
- 资助金额:
$ 7万 - 项目类别:
Standard Grant
Spectral Problems of Mathematical Physics Related to Novel Materials Science and Photonics
与新材料科学和光子学相关的数学物理谱问题
- 批准号:
1517938 - 财政年份:2015
- 资助金额:
$ 7万 - 项目类别:
Standard Grant
Collaborative research: Mathematics of emerging imaging methods in medicine and homeland security
合作研究:医学和国土安全中新兴成像方法的数学
- 批准号:
1211463 - 财政年份:2012
- 资助金额:
$ 7万 - 项目类别:
Continuing Grant
Analysis on Graphs and its Applications: Follow-up Meeting
图分析及其应用:后续会议
- 批准号:
0963287 - 财政年份:2010
- 资助金额:
$ 7万 - 项目类别:
Standard Grant
Collaborative Research: Mathematical Techniques for Emerging Methods in Biomedical Imaging
合作研究:生物医学成像新兴方法的数学技术
- 批准号:
0908208 - 财政年份:2009
- 资助金额:
$ 7万 - 项目类别:
Standard Grant
Mathematical Methods for Novel Modalities of Medical Imaging
医学成像新模式的数学方法
- 批准号:
0604778 - 财政年份:2006
- 资助金额:
$ 7万 - 项目类别:
Standard Grant
Band-gap Materials, Mesoscopic Structures, and Related Topics
带隙材料、介观结构及相关主题
- 批准号:
0296150 - 财政年份:2001
- 资助金额:
$ 7万 - 项目类别:
Standard Grant
Band-gap Materials, Mesoscopic Structures, and Related Topics
带隙材料、介观结构及相关主题
- 批准号:
0072248 - 财政年份:2000
- 资助金额:
$ 7万 - 项目类别:
Standard Grant
相似国自然基金
基于Graph-PINN的层结稳定度参数化建模与沙尘跨介质耦合传输模拟研
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
平面三角剖分flip graph的强凸性研究
- 批准号:12301432
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
基于graph的多对比度磁共振图像重建方法
- 批准号:61901188
- 批准年份:2019
- 资助金额:24.5 万元
- 项目类别:青年科学基金项目
基于de bruijn graph梳理的宏基因组拼接算法开发
- 批准号:61771009
- 批准年份:2017
- 资助金额:50.0 万元
- 项目类别:面上项目
基于Graph和ISA的红外目标分割与识别方法研究
- 批准号:61101246
- 批准年份:2011
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
中国Web Graph的挖掘与应用研究
- 批准号:60473122
- 批准年份:2004
- 资助金额:23.0 万元
- 项目类别:面上项目
相似海外基金
SHINE: Understanding the Relationships of Photospheric Vector Magnetic Field Parameters in Solar Flare Occurrences using Graph-based Machine Learning Models
SHINE:使用基于图的机器学习模型了解太阳耀斑发生时光球矢量磁场参数的关系
- 批准号:
2301397 - 财政年份:2023
- 资助金额:
$ 7万 - 项目类别:
Standard Grant
OAC Core: Transpass: Transpiling Parallel Task Graph Programming Models for Scientific Software
OAC 核心:Transpass:为科学软件转译并行任务图编程模型
- 批准号:
2349143 - 财政年份:2023
- 资助金额:
$ 7万 - 项目类别:
Standard Grant
Collaborative Research: III: Medium: Graph Neural Networks for Heterophilous Data: Advancing the Theory, Models, and Applications
合作研究:III:媒介:异质数据的图神经网络:推进理论、模型和应用
- 批准号:
2406648 - 财政年份:2023
- 资助金额:
$ 7万 - 项目类别:
Standard Grant
Automatic derivation of dynamical models from temporal network data using a graph rewriting system
使用图重写系统从时态网络数据自动推导动态模型
- 批准号:
23H03414 - 财政年份:2023
- 资助金额:
$ 7万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Proto-OKN Theme 1: Knowledge Graph to Support Evaluation and Development of Climate Models
Proto-OKN 主题 1:支持气候模型评估和开发的知识图
- 批准号:
2333789 - 财政年份:2023
- 资助金额:
$ 7万 - 项目类别:
Cooperative Agreement
CAREER: Making Robots More Cooperative Agents: Controlling Costs of Coordination Through Graph-Based Models of Joint Activity
职业:让机器人更具合作性:通过基于图的联合活动模型控制协调成本
- 批准号:
2238402 - 财政年份:2023
- 资助金额:
$ 7万 - 项目类别:
Continuing Grant
III: Small: A New Machine Learning Paradigm Towards Effective yet Efficient Foundation Graph Learning Models
III:小型:一种新的机器学习范式,实现有效且高效的基础图学习模型
- 批准号:
2321504 - 财政年份:2023
- 资助金额:
$ 7万 - 项目类别:
Standard Grant
Characterization of network structure in random graph models and neural data
随机图模型和神经数据中网络结构的表征
- 批准号:
574654-2022 - 财政年份:2022
- 资助金额:
$ 7万 - 项目类别:
University Undergraduate Student Research Awards
Collaborative Research: III: Medium: Graph Neural Networks for Heterophilous Data: Advancing the Theory, Models, and Applications
合作研究:III:媒介:异质数据的图神经网络:推进理论、模型和应用
- 批准号:
2212143 - 财政年份:2022
- 资助金额:
$ 7万 - 项目类别:
Standard Grant
Adaptive Dependent Data Models via Graph-Informed Shrinkage and Sparsity
通过图通知收缩和稀疏性的自适应相关数据模型
- 批准号:
2214726 - 财政年份:2022
- 资助金额:
$ 7万 - 项目类别:
Standard Grant