Mathematical Methods for Novel Modalities of Medical Imaging

医学成像新模式的数学方法

基本信息

  • 批准号:
    0604778
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2006
  • 资助国家:
    美国
  • 起止时间:
    2006-09-01 至 2010-08-31
  • 项目状态:
    已结题

项目摘要

KuchmentDMS-0604778 The investigator and his colleague develop mathematicaltechniques, both analytic and numerical, for obtaining images ofbiological tissues. They concentrate on mathematical issues thatarise in recently introduced imaging methods for which there islittle mathematical theory: Thermoacoustic Tomography (TAT),Ultrasound-Modulated Optical Tomography (UOT), andAcousto-Electric Tomography (AET). Computerized tomography has become a major method of medicaldiagnostic imaging and industrial non-destructive testing. Overtime, many modalities have been developed, such as X-raytomography (usual CAT scan), MRI, Emission Tomography, OpticalTomography (OT) and Electrical Impedance Tomography (EIT), toname only a few. All of them have their advantages anddisadvantages in terms of contrast between different biologicaltissues, resolution, cost of devices and procedures, and safetyof the patient. For instance, cheap and safe procedures like EITand OT are plagued by low resolution. Recent years have broughtnovel methods of imaging that intend to overcome these problemsand have a high potential for becoming cheap, safe and effectivediagnostic tools. These are Thermoacoustic Tomography (TAT),Ultrasound-Modulated Optical Tomography (UOT), andAcousto-Electric Tomography (AET). They all combine differenttypes of radiation to overcome the known difficulties of methodsinvolving only one of these modalities (e.g., optical tomography,ultrasound imaging, or electrical impedance tomography), such as,for example, low contrast of ultrasound imaging and highinstability and low resolution of optical and electricalimpedance imaging. Mathematical issues are among the mostcrucial in development of these methods, because images have tobe obtained by sophisticated mathematical procedures rather thanby direct acquisition as in the standard (non-tomographic) X-rayimaging. However, in all these modalities necessary analytic andnumerical tools are essentially absent or at very early stages ofdevelopment. Thus, the investigators develop mathematicalanalytic and numerical techniques for obtaining images ofbiological tissues, with the primary targets being TAT, UOT, andAET. The project aids development and implementation of severalnew, cheap, and safe methods of medical diagnostic imaging to beused in clinics. Some applications for non-destructiveindustrial testing are also possible. Graduate students play asignificant role in the project, and some of the project'stechniques and results are incorporated into graduate-levelclasses. This prepares students for work in excitingcontemporary areas at the junction of exact sciences and medicineand biology.
Kuchen DMS-0604778这位研究人员和他的同事开发了分析和数值两种数学技术,用于获得生物组织的图像。它们集中在最近引入的成像方法中出现的数学问题,这些方法几乎没有数学理论:热声层析成像(TAT)、超声调制光学层析成像(UOT)和声电层析成像(AET)。计算机层析成像已成为医学诊断成像和工业无损检测的主要方法。随着时间的推移,已经开发了许多方法,例如X射线断层扫描(通常的CAT扫描)、磁共振成像、发射断层扫描、光学断层扫描(OT)和电阻抗断层扫描(EIT),仅举几个例子。它们在不同生物组织之间的对比度、分辨率、设备和程序的成本以及患者的安全性方面都有各自的优缺点。例如,像EIT和OT这样廉价而安全的程序都受到低分辨率的困扰。近年来,出现了旨在克服这些问题的新的成像方法,并具有成为廉价、安全和有效的诊断工具的巨大潜力。它们是热声层析成像(TAT)、超声调制光学层析成像(UOT)和声电层析成像(AET)。它们都组合了不同类型的辐射,以克服仅涉及这些模式中的一种的方法(例如,光学层析成像、超声成像或电阻抗成像)的已知困难,例如,超声成像的低对比度以及光学和电阻抗成像的高不稳定性和低分辨率。在这些方法的发展中,数学问题是最关键的问题之一,因为图像必须通过复杂的数学程序获得,而不是像标准(非断层)X射线成像那样通过直接获取。然而,在所有这些模式中,基本上没有必要的分析和数值工具,或者处于非常早期的发展阶段。因此,研究人员开发了获得生物组织图像的数学分析和数值技术,主要目标是TAT、UOT和AET。该项目帮助开发和实施几种新的、廉价和安全的医学诊断成像方法,用于临床。一些非破坏性工业测试的应用也是可能的。研究生在这个项目中扮演着重要的角色,该项目的一些技术和结果被纳入研究生水平的课程。这为学生在精准科学、医学和生物学交界处的激动人心的当代领域的工作做好准备。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Peter Kuchment其他文献

Peter Kuchment的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Peter Kuchment', 18)}}的其他基金

Spectral problems of mathematical physics and material science
数学物理和材料科学的光谱问题
  • 批准号:
    2007408
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Inverse Problems for Biomedical Imaging and Homeland Security
生物医学成像和国土安全的反问题
  • 批准号:
    1816430
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Spectral Problems of Mathematical Physics Related to Novel Materials Science and Photonics
与新材料科学和光子学相关的数学物理谱问题
  • 批准号:
    1517938
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative research: Mathematics of emerging imaging methods in medicine and homeland security
合作研究:医学和国土安全中新兴成像方法的数学
  • 批准号:
    1211463
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Analysis on Graphs and its Applications: Follow-up Meeting
图分析及其应用:后续会议
  • 批准号:
    0963287
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: Mathematical Techniques for Emerging Methods in Biomedical Imaging
合作研究:生物医学成像新兴方法的数学技术
  • 批准号:
    0908208
  • 财政年份:
    2009
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
SM: Graph Models in Nanotechnology, Photonics, Chemistry, and Other Areas
SM:纳米技术、光子学、化学和其他领域的图模型
  • 批准号:
    0648786
  • 财政年份:
    2007
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Quantum Graphs and Their Applications
量子图及其应用
  • 批准号:
    0406022
  • 财政年份:
    2004
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Band-gap Materials, Mesoscopic Structures, and Related Topics
带隙材料、介观结构及相关主题
  • 批准号:
    0296150
  • 财政年份:
    2001
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Band-gap Materials, Mesoscopic Structures, and Related Topics
带隙材料、介观结构及相关主题
  • 批准号:
    0072248
  • 财政年份:
    2000
  • 资助金额:
    --
  • 项目类别:
    Standard Grant

相似国自然基金

Computational Methods for Analyzing Toponome Data
  • 批准号:
    60601030
  • 批准年份:
    2006
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CAREER: Novel Parallelization Frameworks for Large-Scale Network Optimization with Combinatorial Requirements: Solution Methods and Applications
职业:具有组合要求的大规模网络优化的新型并行化框架:解决方法和应用
  • 批准号:
    2338641
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Conference: Mathematical Methods for Novel Metamaterials
会议:新型超材料的数学方法
  • 批准号:
    2328600
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
High-Valent Iron-Oxo Species for Activation of Strong CH Bonds: New Designs with Novel Ab Initio Methods and Machine Learning
用于激活强CH键的高价铁氧物种:采用新颖的从头算方法和机器学习的新设计
  • 批准号:
    24K17694
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Novel tractography-guided MRI methods for studying healthy brain ageing
用于研究健康大脑衰老的新型纤维束成像引导 MRI 方法
  • 批准号:
    DP240102161
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Discovery Projects
Using Novel Machine Learning Methods to Personalize Strategies for Prevention of Persistent AKI after Cardiac Surgery
使用新颖的机器学习方法制定个性化策略,预防心脏手术后持续性 AKI
  • 批准号:
    10979324
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
Novel Finite Element Methods for Nonlinear Eigenvalue Problems - A Holomorphic Operator-Valued Function Approach
非线性特征值问题的新颖有限元方法 - 全纯算子值函数方法
  • 批准号:
    2109949
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Biogeochemical cycling in the critical coastal zone: Developing novel methods to make reliable measurements of geochemical fluxes in permeable sedimen
关键沿海地区的生物地球化学循环:开发新方法来可靠测量可渗透沉积物中的地球化学通量
  • 批准号:
    2892737
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Studentship
Novel In-Cell Instrumentation Methods for Large Format Prismatic Battery Cells project
用于大型棱柱形电池项目的新型内嵌仪器方法
  • 批准号:
    2883784
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Studentship
MPhil/PhD Statistics (Assessing inequality in the Criminal Justice System using novel causal inference methods and Bayesian spatial models)
硕士/博士统计学(使用新颖的因果推理方法和贝叶斯空间模型评估刑事司法系统中的不平等)
  • 批准号:
    2905812
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Studentship
Novel Computational Methods for Microbiome Data Analysis in Longitudinal Study
纵向研究中微生物组数据分析的新计算方法
  • 批准号:
    10660234
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了