Quantum Graphs and Their Applications

量子图及其应用

基本信息

  • 批准号:
    0406022
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2004
  • 资助国家:
    美国
  • 起止时间:
    2004-07-15 至 2008-06-30
  • 项目状态:
    已结题

项目摘要

The project addresses an emerging field of quantum graphs and their applications to modeling quasi-one-dimensional complex physical systems. In this project, quantum graphs are graphs considered as one-dimensional singular varieties equipped with differential or pseudo-differential "Hamiltonians." The main problems to be considered are modeling wave propagation in thin systems by graph models and studying properties of these models of relevance for many areas of application, ranging from chemistry, to optics, to nanotechnology.Motivation for this study comes from various areas of engineering, sciences, and mathematics. Among them are materials science (nanotechnology, in particular circuits containing quantum wires, and novel optical materials, so-called photonic crystals) and high-performance computing (optical and quantum computing). The project aims to develop the subject of quantum graph theory, which, in spite of its wide applicability, is still in early stages of development. The project will advance knowledge in this important area of mathematics with applications to several active branches of science and engineering.
该项目涉及量子图的新兴领域及其在准一维复杂物理系统建模中的应用。在这个项目中,量子图被认为是具有微分或伪微分“哈密顿量”的一维奇异变体的图。要考虑的主要问题是通过图形模型来模拟薄系统中的波传播,并研究这些与许多应用领域相关的模型的性质,从化学、光学到纳米技术。这项研究的动机来自工程、科学和数学的各个领域。其中包括材料科学(纳米技术,特别是包含量子线的电路,以及新型光学材料,即所谓的光子晶体)和高性能计算(光学和量子计算)。该项目旨在发展量子图论这一学科,尽管它具有广泛的适用性,但仍处于早期发展阶段。该项目将推进这一重要数学领域的知识,并将其应用于科学和工程的几个活跃分支。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Peter Kuchment其他文献

Peter Kuchment的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Peter Kuchment', 18)}}的其他基金

Spectral problems of mathematical physics and material science
数学物理和材料科学的光谱问题
  • 批准号:
    2007408
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Inverse Problems for Biomedical Imaging and Homeland Security
生物医学成像和国土安全的反问题
  • 批准号:
    1816430
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Spectral Problems of Mathematical Physics Related to Novel Materials Science and Photonics
与新材料科学和光子学相关的数学物理谱问题
  • 批准号:
    1517938
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative research: Mathematics of emerging imaging methods in medicine and homeland security
合作研究:医学和国土安全中新兴成像方法的数学
  • 批准号:
    1211463
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Analysis on Graphs and its Applications: Follow-up Meeting
图分析及其应用:后续会议
  • 批准号:
    0963287
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: Mathematical Techniques for Emerging Methods in Biomedical Imaging
合作研究:生物医学成像新兴方法的数学技术
  • 批准号:
    0908208
  • 财政年份:
    2009
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
SM: Graph Models in Nanotechnology, Photonics, Chemistry, and Other Areas
SM:纳米技术、光子学、化学和其他领域的图模型
  • 批准号:
    0648786
  • 财政年份:
    2007
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Mathematical Methods for Novel Modalities of Medical Imaging
医学成像新模式的数学方法
  • 批准号:
    0604778
  • 财政年份:
    2006
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Band-gap Materials, Mesoscopic Structures, and Related Topics
带隙材料、介观结构及相关主题
  • 批准号:
    0296150
  • 财政年份:
    2001
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Band-gap Materials, Mesoscopic Structures, and Related Topics
带隙材料、介观结构及相关主题
  • 批准号:
    0072248
  • 财政年份:
    2000
  • 资助金额:
    --
  • 项目类别:
    Standard Grant

相似海外基金

Graphs and association schemes: higher-dimensional invariants and their applications
图和关联方案:高维不变量及其应用
  • 批准号:
    22K03403
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Research of the topology of spatial graphs and their intrinsic properties
空间图的拓扑结构及其内在性质研究
  • 批准号:
    22K03297
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Graphs and their structure: the interplay between local and global properties of graphs
图及其结构:图的局部属性和全局属性之间的相互作用
  • 批准号:
    RGPIN-2016-05237
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
LEAPS-MPS: Foundational Connections in Number Theory, Coding Theory, Graphs, and Their Applications
LEAPS-MPS:数论、编码理论、图及其应用的基础联系
  • 批准号:
    2137661
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Graphs and their structure: the interplay between local and global properties of graphs
图及其结构:图的局部属性和全局属性之间的相互作用
  • 批准号:
    RGPIN-2016-05237
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Graphs and their structure: the interplay between local and global properties of graphs
图及其结构:图的局部属性和全局属性之间的相互作用
  • 批准号:
    RGPIN-2016-05237
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Combinatorics of graphs, posets, matroids, and finite discrete structure and their applications
图、偏序集、拟阵和有限离散结构的组合及其应用
  • 批准号:
    19K03598
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Graphs and their structure: the interplay between local and global properties of graphs
图及其结构:图的局部属性和全局属性之间的相互作用
  • 批准号:
    RGPIN-2016-05237
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Zeros of Eigenfunctions of Metric Graphs and Their Applications to Spectral Gap Estimates and to Buckling of Structures
度量图本征函数的零点及其在谱间隙估计和结构屈曲中的应用
  • 批准号:
    1815075
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Equivalence of plane geometric graphs by transformations and their related topics
平面几何图的变换等价及其相关主题
  • 批准号:
    18K03390
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了