Topological, Enumerative, and Algebraic Combinatorics
拓扑、枚举和代数组合
基本信息
- 批准号:1518389
- 负责人:
- 金额:$ 18.1万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-08-01 至 2022-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
PI John Shareshian studies problems in combinatorics that arise in or have consequences for other fields of mathematics. Combinatorics is the study of discrete, typically finite, mathematical structures. Such structures arise often in mathematics and the natural and social sciences, leading to various applications. For example, networks of various types are modeled by combinatorialists as graphs, which are simply collections of points, some pairs of which are considered to be related. Despite the simplicity of such models, mathematicians have derived many deep and applicable theorems about them. Perhaps surprisingly, there are close connections between combinatorics and other fields of mathematics in which non-discrete objects are studied, including topology and geometry. The work of PI Shareshian involves the close study of such connections, with the aim of solving problems about both discrete and non-discrete structures.PI Shareshian studies connections between combinatorics and other fields of mathematics, including algebra, topology, and geometry. In joint work with Michelle Wachs, he aims to prove that the graded Frobenius characteristic of a refined version of Stanley's chromatic symmetric function for a unit interval graph is in fact the cohomology of an associated regular semisimple Hessenberg variety, and to use such a result to attack a longstanding conjecture of Stanley and Stembridge about such symmetric functions. Shareshian studies connections between the structure algebraic objects and the combinatorial structure of lattices naturally associated to such objects. For example, he aims to provide a result on Lie algebras roughly analogous to his earlier result that a finite group is solvable if and only if the order complex of its subgroup lattice is shellable.
Pi John Shareshian研究组合学中的问题,这些问题出现在其他数学领域,或对其他数学领域产生影响。组合学是对离散的、通常是有限的数学结构的研究。这种结构经常出现在数学、自然科学和社会科学中,导致了各种应用。例如,组合学家将各种类型的网络建模为图,这些图仅仅是点的集合,其中一些点对被认为是相关的。尽管这些模型很简单,但数学家们已经得到了许多关于它们的深刻而适用的定理。也许令人惊讶的是,组合学和其他研究非离散对象的数学领域之间有着密切的联系,包括拓扑学和几何学。Pi Shareshian的工作涉及对这种联系的密切研究,目的是解决离散和非离散结构的问题。PI Shareshian研究组合学和其他数学领域之间的联系,包括代数、拓扑和几何。在与Michelle Waches的合作中,他的目的是证明单位区间图的Stanley色对称函数的精化形式的分次Frobenius特征实际上是相关的正则半单Hessenberg簇的上同调,并利用这样的结果来攻击Stanley和Stembridge关于这种对称函数的一个长期猜想。Shareshian研究了结构代数对象和与这些对象自然相关的格子的组合结构之间的联系。例如,他的目标是提供一个关于李代数的结果,该结果与他早期的结果大致相似,即一个有限群是可解的当且仅当它的子群格序复形是可壳的。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
John Shareshian其他文献
Chains of Modular Elements and Lattice Connectivity
- DOI:
10.1007/s11083-006-9053-x - 发表时间:
2007-01-24 - 期刊:
- 影响因子:0.300
- 作者:
Patricia Hersh;John Shareshian - 通讯作者:
John Shareshian
Toric orbifolds associated with partitioned weight polytopes in classical types
- DOI:
10.1007/s00029-024-00977-9 - 发表时间:
2024-09-27 - 期刊:
- 影响因子:1.200
- 作者:
Tatsuya Horiguchi;Mikiya Masuda;John Shareshian;Jongbaek Song - 通讯作者:
Jongbaek Song
From Bruhat intervals to intersection lattices and a conjecture of Postnikov
- DOI:
10.1016/j.jcta.2008.09.001 - 发表时间:
2009-04-01 - 期刊:
- 影响因子:
- 作者:
Axel Hultman;Svante Linusson;John Shareshian;Jonas Sjöstrand - 通讯作者:
Jonas Sjöstrand
Truncated Quillen complexes of $$p$$ -groups
- DOI:
10.1007/s10801-014-0506-9 - 发表时间:
2014-06-06 - 期刊:
- 影响因子:0.900
- 作者:
Francesco Fumagalli;John Shareshian - 通讯作者:
John Shareshian
A new subgroup lattice characterization of finite solvable groups
- DOI:
10.1016/j.jalgebra.2011.10.032 - 发表时间:
2012-02-01 - 期刊:
- 影响因子:
- 作者:
John Shareshian;Russ Woodroofe - 通讯作者:
Russ Woodroofe
John Shareshian的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('John Shareshian', 18)}}的其他基金
Conference on Algebraic, Enumerative and Topological Combinatorics
代数、枚举和拓扑组合学会议
- 批准号:
1500820 - 财政年份:2015
- 资助金额:
$ 18.1万 - 项目类别:
Standard Grant
Algebraic Enumerative and Topological Combinatorics
代数枚举和拓扑组合学
- 批准号:
1202337 - 财政年份:2012
- 资助金额:
$ 18.1万 - 项目类别:
Standard Grant
Algebraic, topological and enumerative combinatorics
代数、拓扑和枚举组合学
- 批准号:
0902142 - 财政年份:2009
- 资助金额:
$ 18.1万 - 项目类别:
Standard Grant
Enumerative, Algebraic and Topological Combinatorics
枚举、代数和拓扑组合学
- 批准号:
0604233 - 财政年份:2006
- 资助金额:
$ 18.1万 - 项目类别:
Standard Grant
Combinatorial problems arising in finite group theory, 3-manifold topology and other areas
有限群论、三流形拓扑和其他领域中出现的组合问题
- 批准号:
0300483 - 财政年份:2003
- 资助金额:
$ 18.1万 - 项目类别:
Standard Grant
Combinatorial Problems in Algebra, Topology and Geometry
代数、拓扑和几何中的组合问题
- 批准号:
0233958 - 财政年份:2001
- 资助金额:
$ 18.1万 - 项目类别:
Standard Grant
Combinatorial Problems in Algebra, Topology and Geometry
代数、拓扑和几何中的组合问题
- 批准号:
0070757 - 财政年份:2000
- 资助金额:
$ 18.1万 - 项目类别:
Standard Grant
相似海外基金
Conference: Conference on Enumerative and Algebraic Combinatorics
会议:枚举与代数组合学会议
- 批准号:
2344639 - 财政年份:2024
- 资助金额:
$ 18.1万 - 项目类别:
Standard Grant
Dualities in Enumerative Algebraic Geometry
枚举代数几何中的对偶性
- 批准号:
2302117 - 财政年份:2023
- 资助金额:
$ 18.1万 - 项目类别:
Standard Grant
Fusion of enumerative and algebraic geometry and exploration of quasi-geometric invariants
枚举几何与代数几何的融合以及准几何不变量的探索
- 批准号:
23K17298 - 财政年份:2023
- 资助金额:
$ 18.1万 - 项目类别:
Grant-in-Aid for Challenging Research (Pioneering)
Algebraic Combinatorics of Symmetric Functions and its Applications to Representation Theory and Enumerative Combinatorics
对称函数的代数组合及其在表示论和枚举组合学中的应用
- 批准号:
18K03208 - 财政年份:2018
- 资助金额:
$ 18.1万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Topology of Algebraic Varieties and Enumerative Combinatorial Geometry
代数簇拓扑与枚举组合几何
- 批准号:
1701305 - 财政年份:2017
- 资助金额:
$ 18.1万 - 项目类别:
Continuing Grant
Enumerative Problems in Algebraic Geometry
代数几何中的枚举问题
- 批准号:
1951097 - 财政年份:2017
- 资助金额:
$ 18.1万 - 项目类别:
Studentship
Conference on Algebraic, Enumerative and Topological Combinatorics
代数、枚举和拓扑组合学会议
- 批准号:
1500820 - 财政年份:2015
- 资助金额:
$ 18.1万 - 项目类别:
Standard Grant
Characteristic classes of algebraic stacks and application to enumerative problems
代数栈的特征类及其在枚举问题中的应用
- 批准号:
24340007 - 财政年份:2012
- 资助金额:
$ 18.1万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Algebraic Enumerative and Topological Combinatorics
代数枚举和拓扑组合学
- 批准号:
1202337 - 财政年份:2012
- 资助金额:
$ 18.1万 - 项目类别:
Standard Grant
Studies in Algebraic and Enumerative Combinatorics
代数和枚举组合学研究
- 批准号:
1068625 - 财政年份:2011
- 资助金额:
$ 18.1万 - 项目类别:
Continuing Grant