Algebraic Enumerative and Topological Combinatorics

代数枚举和拓扑组合学

基本信息

  • 批准号:
    1202337
  • 负责人:
  • 金额:
    $ 28.42万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-07-01 至 2017-06-30
  • 项目状态:
    已结题

项目摘要

John Shareshian plans to work on four projects. He will continue joint work with Michelle Wachs involving the use of quasisymmetric functions in various combinatorial, geometric and representation theoretic settings. The current main goal of this project is to show that the Frobenius characteristic of a representation of the symmetric group on the cohomology of a regular semisimple Hessenberg variety is a refinement of the chromatic symmetric function of a graph naturally associated to the variety. Shareshian will continue joint work with Russ Woodroofe, in which two problems are studied. The first problem is to show that the order complex of the coset poset of a finite group is never contractible. This problem has been reduced by Shareshian and Woodroofe to a problem about prime divisors of indices of maximal subgroups of alternating groups. The second problem is to develop a nongraded analog of Richard Stanley's theory of supersolvable lattices. The main goal is to find a theory that both encompasses the already well-studied theory of left modular lattices and provides a better understanding of combinatorial properties of subgroup lattices of finite solvable groups. Finally, Shareshian will attempt to settle a problem in topological combinatorics raised by Michael Aschbacher and Stephen Smith in their work on the Quillen Conjecture about the partially ordered set of p-subgroups of a finite group.Shareshian studies connections between three areas of mathematics, namely, combinatorics, group theory and geometry. Combinatorialists study discrete, usually finite, structures, often attempting to enumerate all such structures satisfying a given condition. Combinatorial problems arise naturally in various areas of intellectual inquiry, including mathematics, computer science, physics and biology. Group theorists study symmetry by encoding the symmetries of an object by an algebraic system, called a group. Since humans are naturally drawn to highly symmetric objects and use symmetry to understand many scientific and aesthetic phenomena, group theory is ubiquitous. It appears, for example, in many problems from physics and chemistry. Geometers study shapes. These shapes might live in spaces of high dimension and therefore be inaccessible to understanding through visualization. Mathematicians often attempt to understand such shapes by associating to them algebraic systems in a way that provides useful information. In some cases, these algebraic systems are best understood by associating to them combinatorial objects that encode the algebraic information relevant to the geometric problem at hand. Shareshian examines combinatorial objects arising in this manner.
John Shareshian计划参与四个项目。他将继续与米歇尔·瓦克斯合作,涉及在各种组合、几何和表示理论环境中使用准对称函数。这个项目目前的主要目标是证明正则半单Hessenberg簇的上同调上的对称群的表示的Frobenius特征是与该簇自然相关的图的色对称函数的精化。沙雷希安将继续与拉斯·伍德罗夫合作,其中研究了两个问题。第一个问题是证明有限群的陪集偏序集的序复形永远不是可压缩的。Shareshian和Woodroofe将这个问题归结为交错群的极大子群的指数的素因子问题。第二个问题是发展理查德·斯坦利的超可解格理论的非分级类比。其主要目的是找到一种既包含已被充分研究的左模格理论,又能更好地理解有限可解群的子群格的组合性质的理论。最后,Shareshian将尝试解决Michael Aschbacher和Stephen Smith在他们关于有限群的p-子群的偏序集的Quillen猜想工作中提出的拓扑组合学中的一个问题。Shareshian研究三个数学领域之间的联系,即组合学、群论和几何。组合学家研究离散的,通常是有限的结构,经常试图列举满足给定条件的所有这样的结构。组合问题自然而然地出现在智力研究的各个领域,包括数学、计算机科学、物理和生物。群论者通过用称为群的代数系统来编码对象的对称性来研究对称性。由于人类天生就被高度对称的物体所吸引,并利用对称性来理解许多科学和美学现象,因此群论无处不在。例如,它出现在物理和化学的许多问题中。几何学家研究形状。这些形状可能生活在高维空间中,因此无法通过可视化来理解。数学家经常试图通过将提供有用信息的代数系统与它们联系起来来理解这些形状。在某些情况下,通过将编码与手边几何问题相关的代数信息的组合对象与这些代数系统相关联来最好地理解这些代数系统。Shareshian研究了以这种方式出现的组合对象。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

John Shareshian其他文献

Chains of Modular Elements and Lattice Connectivity
Toric orbifolds associated with partitioned weight polytopes in classical types
  • DOI:
    10.1007/s00029-024-00977-9
  • 发表时间:
    2024-09-27
  • 期刊:
  • 影响因子:
    1.200
  • 作者:
    Tatsuya Horiguchi;Mikiya Masuda;John Shareshian;Jongbaek Song
  • 通讯作者:
    Jongbaek Song
From Bruhat intervals to intersection lattices and a conjecture of Postnikov
  • DOI:
    10.1016/j.jcta.2008.09.001
  • 发表时间:
    2009-04-01
  • 期刊:
  • 影响因子:
  • 作者:
    Axel Hultman;Svante Linusson;John Shareshian;Jonas Sjöstrand
  • 通讯作者:
    Jonas Sjöstrand
Truncated Quillen complexes of $$p$$ -groups
  • DOI:
    10.1007/s10801-014-0506-9
  • 发表时间:
    2014-06-06
  • 期刊:
  • 影响因子:
    0.900
  • 作者:
    Francesco Fumagalli;John Shareshian
  • 通讯作者:
    John Shareshian
A new subgroup lattice characterization of finite solvable groups
  • DOI:
    10.1016/j.jalgebra.2011.10.032
  • 发表时间:
    2012-02-01
  • 期刊:
  • 影响因子:
  • 作者:
    John Shareshian;Russ Woodroofe
  • 通讯作者:
    Russ Woodroofe

John Shareshian的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('John Shareshian', 18)}}的其他基金

Conference on Algebraic, Enumerative and Topological Combinatorics
代数、枚举和拓扑组合学会议
  • 批准号:
    1500820
  • 财政年份:
    2015
  • 资助金额:
    $ 28.42万
  • 项目类别:
    Standard Grant
Topological, Enumerative, and Algebraic Combinatorics
拓扑、枚举和代数组合
  • 批准号:
    1518389
  • 财政年份:
    2015
  • 资助金额:
    $ 28.42万
  • 项目类别:
    Continuing Grant
Algebraic, topological and enumerative combinatorics
代数、拓扑和枚举组合学
  • 批准号:
    0902142
  • 财政年份:
    2009
  • 资助金额:
    $ 28.42万
  • 项目类别:
    Standard Grant
Enumerative, Algebraic and Topological Combinatorics
枚举、代数和拓扑组合学
  • 批准号:
    0604233
  • 财政年份:
    2006
  • 资助金额:
    $ 28.42万
  • 项目类别:
    Standard Grant
Combinatorial problems arising in finite group theory, 3-manifold topology and other areas
有限群论、三流形拓扑和其他领域中出现的组合问题
  • 批准号:
    0300483
  • 财政年份:
    2003
  • 资助金额:
    $ 28.42万
  • 项目类别:
    Standard Grant
Combinatorial Problems in Algebra, Topology and Geometry
代数、拓扑和几何中的组合问题
  • 批准号:
    0233958
  • 财政年份:
    2001
  • 资助金额:
    $ 28.42万
  • 项目类别:
    Standard Grant
Combinatorial Problems in Algebra, Topology and Geometry
代数、拓扑和几何中的组合问题
  • 批准号:
    0070757
  • 财政年份:
    2000
  • 资助金额:
    $ 28.42万
  • 项目类别:
    Standard Grant

相似海外基金

Postdoctoral Fellowship: MPS-Ascend: Topological Enrichments in Enumerative Geometry
博士后奖学金:MPS-Ascend:枚举几何中的拓扑丰富
  • 批准号:
    2402099
  • 财政年份:
    2024
  • 资助金额:
    $ 28.42万
  • 项目类别:
    Fellowship Award
Logarithmic enumerative geometry and moduli spaces
对数枚举几何和模空间
  • 批准号:
    EP/Y037162/1
  • 财政年份:
    2024
  • 资助金额:
    $ 28.42万
  • 项目类别:
    Research Grant
A1-Homotopy Theory and Applications to Enumerative Geometry and Number Theory
A1-同伦理论及其在枚举几何和数论中的应用
  • 批准号:
    2405191
  • 财政年份:
    2024
  • 资助金额:
    $ 28.42万
  • 项目类别:
    Standard Grant
Conference: Conference on Enumerative and Algebraic Combinatorics
会议:枚举与代数组合学会议
  • 批准号:
    2344639
  • 财政年份:
    2024
  • 资助金额:
    $ 28.42万
  • 项目类别:
    Standard Grant
Collaborative Research: Derived Categories in Birational Geometry, Enumerative Geometry, and Non-commutative Algebra
合作研究:双有理几何、枚举几何和非交换代数中的派生范畴
  • 批准号:
    2302262
  • 财政年份:
    2023
  • 资助金额:
    $ 28.42万
  • 项目类别:
    Standard Grant
Dualities in Enumerative Algebraic Geometry
枚举代​​数几何中的对偶性
  • 批准号:
    2302117
  • 财政年份:
    2023
  • 资助金额:
    $ 28.42万
  • 项目类别:
    Standard Grant
Conference: Motivic and non-commutative aspects of enumerative geometry, Homotopy theory, K-theory, and trace methods
会议:计数几何的本构和非交换方面、同伦理论、K 理论和迹方法
  • 批准号:
    2328867
  • 财政年份:
    2023
  • 资助金额:
    $ 28.42万
  • 项目类别:
    Standard Grant
Collaborative Research: Derived Categories in Birational Geometry, Enumerative Geometry, and Non-commutative Algebra
合作研究:双有理几何、枚举几何和非交换代数中的派生范畴
  • 批准号:
    2302263
  • 财政年份:
    2023
  • 资助金额:
    $ 28.42万
  • 项目类别:
    Standard Grant
Fusion of enumerative and algebraic geometry and exploration of quasi-geometric invariants
枚举几何与代数几何的融合以及准几何不变量的探索
  • 批准号:
    23K17298
  • 财政年份:
    2023
  • 资助金额:
    $ 28.42万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Pioneering)
Representation theory of affine Lie algebras and enumerative geometry of sheaves on toric surfaces and threefolds
仿射李代数表示论与复曲面和三重滑轮的枚举几何
  • 批准号:
    567867-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 28.42万
  • 项目类别:
    Postdoctoral Fellowships
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了