Enumerative, Algebraic and Topological Combinatorics
枚举、代数和拓扑组合学
基本信息
- 批准号:0604233
- 负责人:
- 金额:$ 14.45万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2006
- 资助国家:美国
- 起止时间:2006-07-01 至 2011-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
John Shareshian works on problems in algebraic, topological andenumerative combinatorics that have close connections with other areas ofmathematics. Alone, in joint work with Michelle Wachs and in additionaljoint work with Philip Hanlon and Patricia Hersh, he studies group actionson homology of order complexes of various partially ordered sets, withapplications to permutation enumeration and representation theory ofsymmetric groups and finite groups of Lie type. In joint work with DavidWright, he studies certain vector spaces with bases indexed by finitetrees, which arise in the study of the Jacobian Conjecture.This grant supports work in the area of combinatorics. Roughly,combinatorics is the study of discrete, usually finite, mathematicalobjects. Combinatorial problems arise naturally in various scientificdisciplines, including biology, computer science and electricalengineering, and in most areas of pure mathematics. Most of the workspecifically supported by this grant involves the study of symmetries ofpartially ordered sets. A partially ordered set is a set in which some(but not necessarily all) pairs a,b of elements are related in a mannerthat mimics the relation ab on the set of real numbers. (For example,if a,b are related and b,c are related then a,c must be related.) Asymmetry of a partially ordered set is a rearrangement of the set whichsends related pairs to related pairs. (For example, if we take the set ofall real numbers with the usual relation, then the rearrangementobtained by sending each number x to x+1 is a symmetry, while therearrangement obtained by sending x to -x is not.) Partiallyordered sets and their symmetries are of interest to mathematiciansworking in several areas of pure mathematics, including topology andalgebra. They have been used to attack difficult problems in theoreticalcomputer science.
约翰Shareshian工程的问题,代数,拓扑和计数组合数学有密切的联系,与其他领域的数学。 单独,在联合工作与米歇尔瓦克斯和additialjoint工作与菲利普汉隆和帕特里夏赫什,他研究了集团actionson同源的秩序复杂的各种偏序集,与应用置换枚举和代表性理论的对称群和有限群的李型。 在与DavidWright的合作中,他研究了某些向量空间,其基础由有限树索引,这是在雅可比猜想的研究中出现的。 粗略地说,组合学是研究离散的,通常是有限的,连续的对象。 组合问题自然地出现在各种科学学科中,包括生物学、计算机科学和电子工程,以及纯数学的大多数领域。 大部分的工作特别支持这项补助金涉及对称性的研究偏序集。 偏序集是一个集合,其中一些(但不一定是所有)元素对a,B以模仿真实的数集合上的关系ab的方式相关。 (For例如,如果a、B相关,而B、c相关,则a、c必须相关。) 偏序集合的不对称性是集合的重排,它将相关的对发送到相关的对。 (For例如,如果我们取所有具有通常关系的真实的数的集合,则通过将每个数x发送到x+1所得到的重排是对称的,而通过将x发送到-x所得到的重排不是。 偏序集和它们的对称性是数学家在纯数学的几个领域中所感兴趣的,包括拓扑学和代数学。 它们被用来解决理论计算机科学中的难题。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
John Shareshian其他文献
Chains of Modular Elements and Lattice Connectivity
- DOI:
10.1007/s11083-006-9053-x - 发表时间:
2007-01-24 - 期刊:
- 影响因子:0.300
- 作者:
Patricia Hersh;John Shareshian - 通讯作者:
John Shareshian
Toric orbifolds associated with partitioned weight polytopes in classical types
- DOI:
10.1007/s00029-024-00977-9 - 发表时间:
2024-09-27 - 期刊:
- 影响因子:1.200
- 作者:
Tatsuya Horiguchi;Mikiya Masuda;John Shareshian;Jongbaek Song - 通讯作者:
Jongbaek Song
From Bruhat intervals to intersection lattices and a conjecture of Postnikov
- DOI:
10.1016/j.jcta.2008.09.001 - 发表时间:
2009-04-01 - 期刊:
- 影响因子:
- 作者:
Axel Hultman;Svante Linusson;John Shareshian;Jonas Sjöstrand - 通讯作者:
Jonas Sjöstrand
Truncated Quillen complexes of $$p$$ -groups
- DOI:
10.1007/s10801-014-0506-9 - 发表时间:
2014-06-06 - 期刊:
- 影响因子:0.900
- 作者:
Francesco Fumagalli;John Shareshian - 通讯作者:
John Shareshian
A new subgroup lattice characterization of finite solvable groups
- DOI:
10.1016/j.jalgebra.2011.10.032 - 发表时间:
2012-02-01 - 期刊:
- 影响因子:
- 作者:
John Shareshian;Russ Woodroofe - 通讯作者:
Russ Woodroofe
John Shareshian的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('John Shareshian', 18)}}的其他基金
Conference on Algebraic, Enumerative and Topological Combinatorics
代数、枚举和拓扑组合学会议
- 批准号:
1500820 - 财政年份:2015
- 资助金额:
$ 14.45万 - 项目类别:
Standard Grant
Topological, Enumerative, and Algebraic Combinatorics
拓扑、枚举和代数组合
- 批准号:
1518389 - 财政年份:2015
- 资助金额:
$ 14.45万 - 项目类别:
Continuing Grant
Algebraic Enumerative and Topological Combinatorics
代数枚举和拓扑组合学
- 批准号:
1202337 - 财政年份:2012
- 资助金额:
$ 14.45万 - 项目类别:
Standard Grant
Algebraic, topological and enumerative combinatorics
代数、拓扑和枚举组合学
- 批准号:
0902142 - 财政年份:2009
- 资助金额:
$ 14.45万 - 项目类别:
Standard Grant
Combinatorial problems arising in finite group theory, 3-manifold topology and other areas
有限群论、三流形拓扑和其他领域中出现的组合问题
- 批准号:
0300483 - 财政年份:2003
- 资助金额:
$ 14.45万 - 项目类别:
Standard Grant
Combinatorial Problems in Algebra, Topology and Geometry
代数、拓扑和几何中的组合问题
- 批准号:
0233958 - 财政年份:2001
- 资助金额:
$ 14.45万 - 项目类别:
Standard Grant
Combinatorial Problems in Algebra, Topology and Geometry
代数、拓扑和几何中的组合问题
- 批准号:
0070757 - 财政年份:2000
- 资助金额:
$ 14.45万 - 项目类别:
Standard Grant
相似国自然基金
同伦和Hodge理论的方法在Algebraic Cycle中的应用
- 批准号:11171234
- 批准年份:2011
- 资助金额:40.0 万元
- 项目类别:面上项目
相似海外基金
LEAPS-MPS: Applications of Algebraic and Topological Methods in Graph Theory Throughout the Sciences
LEAPS-MPS:代数和拓扑方法在图论中在整个科学领域的应用
- 批准号:
2313262 - 财政年份:2023
- 资助金额:
$ 14.45万 - 项目类别:
Standard Grant
Conference: Algebraic and topological interplay of algebraic varieties
会议:代数簇的代数和拓扑相互作用
- 批准号:
2304894 - 财政年份:2023
- 资助金额:
$ 14.45万 - 项目类别:
Standard Grant
Conference on Algebraic Topology and Topological Data Analysis
代数拓扑与拓扑数据分析会议
- 批准号:
2223905 - 财政年份:2022
- 资助金额:
$ 14.45万 - 项目类别:
Standard Grant
Algebraic developments of topological studies around Riemann surfaces
黎曼曲面拓扑研究的代数发展
- 批准号:
22H01120 - 财政年份:2022
- 资助金额:
$ 14.45万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Topological and C*-Algebraic Quantum Matter
拓扑和 C*-代数量子物质
- 批准号:
2055501 - 财政年份:2021
- 资助金额:
$ 14.45万 - 项目类别:
Standard Grant
Algebraic K-Theory, Topological Hochschild Homology, and Equivariant Homotopy Theory
代数 K 理论、拓扑 Hochschild 同调和等变同伦理论
- 批准号:
2104233 - 财政年份:2021
- 资助金额:
$ 14.45万 - 项目类别:
Continuing Grant
Probabilistic and Topological methods in Real Algebraic Geometry and Computational Complexity
实代数几何和计算复杂性中的概率和拓扑方法
- 批准号:
EP/V003542/1 - 财政年份:2021
- 资助金额:
$ 14.45万 - 项目类别:
Fellowship
LEAPS-MPS: Applications of Algebraic and Topological Methods in Graph Theory Throughout the Sciences
LEAPS-MPS:代数和拓扑方法在图论中在整个科学领域的应用
- 批准号:
2136890 - 财政年份:2021
- 资助金额:
$ 14.45万 - 项目类别:
Standard Grant
Operator Algebraic Methods in Topological Phases and Quantum Information
拓扑相和量子信息中的算子代数方法
- 批准号:
2435440 - 财政年份:2020
- 资助金额:
$ 14.45万 - 项目类别:
Studentship
Excellence in Research: Morse theory and Algebraic Topological Methods for Q-curvature type equations
卓越研究:Q 曲率型方程的莫尔斯理论和代数拓扑方法
- 批准号:
2000164 - 财政年份:2020
- 资助金额:
$ 14.45万 - 项目类别:
Standard Grant