Combinatorial Problems in Algebra, Topology and Geometry
代数、拓扑和几何中的组合问题
基本信息
- 批准号:0070757
- 负责人:
- 金额:$ 8.23万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2000
- 资助国家:美国
- 起止时间:2000-06-01 至 2001-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The investigator studies combinatorial problems which arisein various areas of mathematics. In joint work with R. Guralnick,the investigator examines branched coverings of Riemann surfaceswhose monodromy groups are the symmetric and alternating groupsS_n and A_n acting on subsets of a fixed size from the n-set. Themain goals of this project are 1) to show that with a small and known list of exceptions, the genus of the covering surface must grow with both the number of sheets of the covering and the number of branch points, and 2) to determine all such coverings for which the genus of the coveringspace is at most one.This project is one of the final steps in a program initiated byGuralnick and J. Thompson. In addition, the investigator continues hisstudy of monotone graph and hypergraph properties which arise in V.Vassiliev's theory of finite type invariants of knots and ornaments.Finally, the investigator continues his examination of order complexesof subgroup lattices of finite groups. He attempts to use topologicalmethods to distinguish intervals in subgroup lattices of finite groupsfrom arbitrary finite lattices. With V. Welker, he investigates thetopology of the order complexes of subgroup lattices of finite simplegroups.The investigator's main interests are in combinatorics, which is thestudy of discrete, usually finite mathematical objects. Combinatorialobjects arise in various areas of applied mathematics and computerscience, including communications and the theory of algorithmiccomplexity. Also, there are complicated nondiscrete mathematicalobjects which can be better understood by examining associatedcombinatorial objects. The investigator studies combinatorial objectswhich arise in this manner.
调查研究组合问题出现在不同领域的数学。 与R. Guralnick,研究了Riemann曲面的分支覆盖,其单值群是作用在n-集的固定大小子集上的对称交错群S_n和A_n。这个项目的主要目标是:1)证明在已知的少数例外情况下,覆盖曲面的亏格必须随着覆盖的片数和分支点的数目而增长; 2)确定覆盖空间的亏格至多为1的所有覆盖。此外,研究者继续研究V.Vassiliev的纽结和装饰的有限型不变量理论中的单调图和超图性质,最后,研究者继续研究有限群的子群格的序复形。他试图用拓扑方法来区分有限群的子群格与任意有限格中的区间。 与韦尔克,他调查了拓扑结构的顺序复杂的子群格的有限simplegroups.The调查员的主要利益是在组合学,这是研究离散的,通常是有限的数学对象。 组合对象出现在应用数学和计算机科学的各个领域,包括通信和算法复杂性理论。 此外,还有复杂的非离散组合对象,可以更好地理解,通过检查相关的组合对象。 研究者研究以这种方式出现的组合对象。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
John Shareshian其他文献
Chains of Modular Elements and Lattice Connectivity
- DOI:
10.1007/s11083-006-9053-x - 发表时间:
2007-01-24 - 期刊:
- 影响因子:0.300
- 作者:
Patricia Hersh;John Shareshian - 通讯作者:
John Shareshian
Toric orbifolds associated with partitioned weight polytopes in classical types
- DOI:
10.1007/s00029-024-00977-9 - 发表时间:
2024-09-27 - 期刊:
- 影响因子:1.200
- 作者:
Tatsuya Horiguchi;Mikiya Masuda;John Shareshian;Jongbaek Song - 通讯作者:
Jongbaek Song
From Bruhat intervals to intersection lattices and a conjecture of Postnikov
- DOI:
10.1016/j.jcta.2008.09.001 - 发表时间:
2009-04-01 - 期刊:
- 影响因子:
- 作者:
Axel Hultman;Svante Linusson;John Shareshian;Jonas Sjöstrand - 通讯作者:
Jonas Sjöstrand
Truncated Quillen complexes of $$p$$ -groups
- DOI:
10.1007/s10801-014-0506-9 - 发表时间:
2014-06-06 - 期刊:
- 影响因子:0.900
- 作者:
Francesco Fumagalli;John Shareshian - 通讯作者:
John Shareshian
A new subgroup lattice characterization of finite solvable groups
- DOI:
10.1016/j.jalgebra.2011.10.032 - 发表时间:
2012-02-01 - 期刊:
- 影响因子:
- 作者:
John Shareshian;Russ Woodroofe - 通讯作者:
Russ Woodroofe
John Shareshian的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('John Shareshian', 18)}}的其他基金
Conference on Algebraic, Enumerative and Topological Combinatorics
代数、枚举和拓扑组合学会议
- 批准号:
1500820 - 财政年份:2015
- 资助金额:
$ 8.23万 - 项目类别:
Standard Grant
Topological, Enumerative, and Algebraic Combinatorics
拓扑、枚举和代数组合
- 批准号:
1518389 - 财政年份:2015
- 资助金额:
$ 8.23万 - 项目类别:
Continuing Grant
Algebraic Enumerative and Topological Combinatorics
代数枚举和拓扑组合学
- 批准号:
1202337 - 财政年份:2012
- 资助金额:
$ 8.23万 - 项目类别:
Standard Grant
Algebraic, topological and enumerative combinatorics
代数、拓扑和枚举组合学
- 批准号:
0902142 - 财政年份:2009
- 资助金额:
$ 8.23万 - 项目类别:
Standard Grant
Enumerative, Algebraic and Topological Combinatorics
枚举、代数和拓扑组合学
- 批准号:
0604233 - 财政年份:2006
- 资助金额:
$ 8.23万 - 项目类别:
Standard Grant
Combinatorial problems arising in finite group theory, 3-manifold topology and other areas
有限群论、三流形拓扑和其他领域中出现的组合问题
- 批准号:
0300483 - 财政年份:2003
- 资助金额:
$ 8.23万 - 项目类别:
Standard Grant
Combinatorial Problems in Algebra, Topology and Geometry
代数、拓扑和几何中的组合问题
- 批准号:
0233958 - 财政年份:2001
- 资助金额:
$ 8.23万 - 项目类别:
Standard Grant
相似海外基金
CAREER: Problems in Commutative and Homological algebra
职业:交换代数和同调代数问题
- 批准号:
2236983 - 财政年份:2023
- 资助金额:
$ 8.23万 - 项目类别:
Continuing Grant
Problems in combinatorial commutative algebra
组合交换代数问题
- 批准号:
RGPIN-2019-05412 - 财政年份:2022
- 资助金额:
$ 8.23万 - 项目类别:
Discovery Grants Program - Individual
Geodetic groups: foundational problems in algebra and computer science
大地测量群:代数和计算机科学的基础问题
- 批准号:
DP210100271 - 财政年份:2021
- 资助金额:
$ 8.23万 - 项目类别:
Discovery Projects
Problems in combinatorial commutative algebra
组合交换代数问题
- 批准号:
RGPIN-2019-05412 - 财政年份:2021
- 资助金额:
$ 8.23万 - 项目类别:
Discovery Grants Program - Individual
Problems in combinatorial commutative algebra
组合交换代数问题
- 批准号:
RGPIN-2019-05412 - 财政年份:2020
- 资助金额:
$ 8.23万 - 项目类别:
Discovery Grants Program - Individual
Problems in combinatorial commutative algebra
组合交换代数问题
- 批准号:
RGPIN-2019-05412 - 财政年份:2019
- 资助金额:
$ 8.23万 - 项目类别:
Discovery Grants Program - Individual
Algorithms for the exact solution to problems in linear algebra
线性代数问题的精确求解算法
- 批准号:
262082-2013 - 财政年份:2017
- 资助金额:
$ 8.23万 - 项目类别:
Discovery Grants Program - Individual
Algorithms for the exact solution to problems in linear algebra
线性代数问题的精确求解算法
- 批准号:
262082-2013 - 财政年份:2016
- 资助金额:
$ 8.23万 - 项目类别:
Discovery Grants Program - Individual
The language complexity of problems in algebra and logic
代数和逻辑问题的语言复杂性
- 批准号:
DP160100486 - 财政年份:2016
- 资助金额:
$ 8.23万 - 项目类别:
Discovery Projects
Algorithms for the exact solution to problems in linear algebra
线性代数问题的精确求解算法
- 批准号:
262082-2013 - 财政年份:2015
- 资助金额:
$ 8.23万 - 项目类别:
Discovery Grants Program - Individual