Algebraic, topological and enumerative combinatorics
代数、拓扑和枚举组合学
基本信息
- 批准号:0902142
- 负责人:
- 金额:$ 19.68万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-08-01 至 2014-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Shareshian will work on several problems in enumerative, algebraic and topological combinatorics. He will continue his joint work with M. Wachs on a project involving quasisymmetric functions and permutation statistics. He will try to extend joint work with A. Hultman, S. Linusson and J. Sjostrand involving hyperplane arrangements and Bruhat order. He will continue to try to prove that there is some finite lattice L such that there is no finite group G whose subgroup lattice contains an interval isomorphic with L. In particular, he will examine a class of lattices appearing in a conjecture that specializes both his own topological conjecture and a combinatorial conjecture of M. Aschbacher.Most of Shareshian's work on this project lies in the intersection of three areas of mathematics, namely, combinatorics, topology and finite group theory. The emphasis is on combinatorics, which is the study of discrete, usually finite, sets endowed with some additional structure. Typically, a combinatorialist wishes to know how many structures of a given type exist, or how many such structures possess some interesting additional property. For example, consider the set S(n) of all possible lists of the numbers 1,...,n. When n=3, there are 3x2x1=6 such lists, namely, 123,132,213,231,312,321. In general, there arenx(n-1)x(n-2)...x2x1 such lists, and when n gets at all large, one cannot answer questions about these lists by examining all of them, even with a very powerful computer. One type of problem of interest is, for given n and k, to figure out how many members of S(n) have exactly k positions i on the list where the number in position i is larger than i. The answer to this particular problem is well understood, but Shareshian and Michelle Wachs are working on various generalizations. With Axel Hultman, Svante Linusson and Jonas Sjostrand, Shareshian proved a conjecture of Alexander Postnikov relating a problem of the type described above to a problem involving slicing high dimensional spaces into pieces. He plans to work on generalizing this result. Finally, Shareshian is working towards proof a conjecture made by himself and Michael Aschbacher relating a class of algebraic objects (ubiquitous in pure and applied mathematics), called finite groups, to a class or combinatorial objects, called finite lattices. In all projects, it is hoped that both the solutions to the problems under consideration and the methods used to obtain them will be of use and interest to both combinatorialists and mathematicians working in other fields.
Shareshian将研究枚举、代数和拓扑组合学中的几个问题。他将继续与M. Wachs在一个涉及拟对称函数和置换统计的项目上的合作。他将尝试扩展与A. Hultman, S. Linusson和J. Sjostrand的联合工作,涉及超平面排列和Bruhat秩序。他将继续尝试证明存在一个有限格L,使得有限群G的子群格不包含与L同构的区间。特别是,他将检验出现在一个猜想中的一类格,这个猜想既专门研究他自己的拓扑猜想,也专门研究M. Aschbacher的组合猜想。Shareshian在这个项目上的大部分工作涉及三个数学领域的交叉,即组合学、拓扑学和有限群论。重点是组合学,它是对具有一些附加结构的离散的,通常是有限的集合的研究。通常,组合学家希望知道给定类型存在多少结构,或者有多少这样的结构具有一些有趣的附加性质。例如,考虑数字1,…,n的所有可能列表的集合S(n)。当n=3时,有3x2x1=6个这样的列表,即123,132,213,231,312,321。一般来说,有x(n-1)x(n-2)…X2x1个这样的列表,当n非常大的时候,我们不能通过检查所有的列表来回答关于这些列表的问题,即使有一台非常强大的计算机。我们感兴趣的一类问题是,对于给定的n和k,计算出S(n)中有多少个元素恰好在列表的第k个位置i上,而第i个位置上的数字大于i。这个问题的答案很容易理解,但Shareshian和Michelle Wachs正在研究各种推广方法。与Axel Hultman, Svante Linusson和Jonas Sjostrand一起,Shareshian证明了Alexander Postnikov的一个猜想,该猜想将上述类型的问题与涉及将高维空间切成块的问题联系起来。他计划推广这一结果。最后,Shareshian正在努力证明他自己和Michael Aschbacher提出的一个猜想,该猜想将一类称为有限群的代数对象(在纯数学和应用数学中普遍存在)与一类称为有限格的组合对象联系起来。在所有的项目中,我们都希望所考虑的问题的解和得到这些解的方法对在其他领域工作的组合学家和数学家都有用处和兴趣。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
John Shareshian其他文献
Chains of Modular Elements and Lattice Connectivity
- DOI:
10.1007/s11083-006-9053-x - 发表时间:
2007-01-24 - 期刊:
- 影响因子:0.300
- 作者:
Patricia Hersh;John Shareshian - 通讯作者:
John Shareshian
Toric orbifolds associated with partitioned weight polytopes in classical types
- DOI:
10.1007/s00029-024-00977-9 - 发表时间:
2024-09-27 - 期刊:
- 影响因子:1.200
- 作者:
Tatsuya Horiguchi;Mikiya Masuda;John Shareshian;Jongbaek Song - 通讯作者:
Jongbaek Song
From Bruhat intervals to intersection lattices and a conjecture of Postnikov
- DOI:
10.1016/j.jcta.2008.09.001 - 发表时间:
2009-04-01 - 期刊:
- 影响因子:
- 作者:
Axel Hultman;Svante Linusson;John Shareshian;Jonas Sjöstrand - 通讯作者:
Jonas Sjöstrand
Truncated Quillen complexes of $$p$$ -groups
- DOI:
10.1007/s10801-014-0506-9 - 发表时间:
2014-06-06 - 期刊:
- 影响因子:0.900
- 作者:
Francesco Fumagalli;John Shareshian - 通讯作者:
John Shareshian
A new subgroup lattice characterization of finite solvable groups
- DOI:
10.1016/j.jalgebra.2011.10.032 - 发表时间:
2012-02-01 - 期刊:
- 影响因子:
- 作者:
John Shareshian;Russ Woodroofe - 通讯作者:
Russ Woodroofe
John Shareshian的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('John Shareshian', 18)}}的其他基金
Conference on Algebraic, Enumerative and Topological Combinatorics
代数、枚举和拓扑组合学会议
- 批准号:
1500820 - 财政年份:2015
- 资助金额:
$ 19.68万 - 项目类别:
Standard Grant
Topological, Enumerative, and Algebraic Combinatorics
拓扑、枚举和代数组合
- 批准号:
1518389 - 财政年份:2015
- 资助金额:
$ 19.68万 - 项目类别:
Continuing Grant
Algebraic Enumerative and Topological Combinatorics
代数枚举和拓扑组合学
- 批准号:
1202337 - 财政年份:2012
- 资助金额:
$ 19.68万 - 项目类别:
Standard Grant
Enumerative, Algebraic and Topological Combinatorics
枚举、代数和拓扑组合学
- 批准号:
0604233 - 财政年份:2006
- 资助金额:
$ 19.68万 - 项目类别:
Standard Grant
Combinatorial problems arising in finite group theory, 3-manifold topology and other areas
有限群论、三流形拓扑和其他领域中出现的组合问题
- 批准号:
0300483 - 财政年份:2003
- 资助金额:
$ 19.68万 - 项目类别:
Standard Grant
Combinatorial Problems in Algebra, Topology and Geometry
代数、拓扑和几何中的组合问题
- 批准号:
0233958 - 财政年份:2001
- 资助金额:
$ 19.68万 - 项目类别:
Standard Grant
Combinatorial Problems in Algebra, Topology and Geometry
代数、拓扑和几何中的组合问题
- 批准号:
0070757 - 财政年份:2000
- 资助金额:
$ 19.68万 - 项目类别:
Standard Grant
相似国自然基金
Orbifold Gromov-Witten理论研究
- 批准号:11171174
- 批准年份:2011
- 资助金额:40.0 万元
- 项目类别:面上项目
拓扑绝缘体中的强关联现象
- 批准号:11047126
- 批准年份:2010
- 资助金额:4.0 万元
- 项目类别:专项基金项目
相似海外基金
Postdoctoral Fellowship: MPS-Ascend: Topological Enrichments in Enumerative Geometry
博士后奖学金:MPS-Ascend:枚举几何中的拓扑丰富
- 批准号:
2402099 - 财政年份:2024
- 资助金额:
$ 19.68万 - 项目类别:
Fellowship Award
Refinement and q-deformation of topological recursion and their applications
拓扑递归的细化和q变形及其应用
- 批准号:
23K12968 - 财政年份:2023
- 资助金额:
$ 19.68万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Enumerative Geometry of Hitchin Systems and Topological Quantum Field Theory
希钦系统的枚举几何与拓扑量子场论
- 批准号:
2041740 - 财政年份:2020
- 资助金额:
$ 19.68万 - 项目类别:
Standard Grant
Enumerative Geometry of Hitchin Systems and Topological Quantum Field Theory
希钦系统的枚举几何与拓扑量子场论
- 批准号:
1802082 - 财政年份:2018
- 资助金额:
$ 19.68万 - 项目类别:
Standard Grant
Conference on Algebraic, Enumerative and Topological Combinatorics
代数、枚举和拓扑组合学会议
- 批准号:
1500820 - 财政年份:2015
- 资助金额:
$ 19.68万 - 项目类别:
Standard Grant
Topological, Enumerative, and Algebraic Combinatorics
拓扑、枚举和代数组合
- 批准号:
1518389 - 财政年份:2015
- 资助金额:
$ 19.68万 - 项目类别:
Continuing Grant
Algebraic Enumerative and Topological Combinatorics
代数枚举和拓扑组合学
- 批准号:
1202337 - 财政年份:2012
- 资助金额:
$ 19.68万 - 项目类别:
Standard Grant
Enumerative, Algebraic and Topological Combinatorics
枚举、代数和拓扑组合学
- 批准号:
0604233 - 财政年份:2006
- 资助金额:
$ 19.68万 - 项目类别:
Standard Grant
Enumerative and Topological Properties of Matroids
拟阵的枚举和拓扑性质
- 批准号:
0245623 - 财政年份:2003
- 资助金额:
$ 19.68万 - 项目类别:
Standard Grant
Topological methods in enumerative geometry of G2 manifolds
G2流形枚举几何中的拓扑方法
- 批准号:
516388824 - 财政年份:
- 资助金额:
$ 19.68万 - 项目类别:
Research Grants