Integrated Geometric and Algebraic Multigrid Methods
综合几何和代数多重网格方法
基本信息
- 批准号:1522615
- 负责人:
- 金额:$ 38.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-09-01 至 2019-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
A primary goal of this project is to create framework for developing more robust and user-friendly solvers for linear systems of equations, which are ubiquitous in science, engineering, and industrial applications. The investigators will carry out integrated analysis and development of geometric multigrid and algebraic multigrid methodologies. Geometric multigrid (GMG) methods form a class of multilevel solvers designed to solve linear systems of equations arising from certain classes of discretized partial differential equations (PDEs). Algebraic multigrid (AMG) methods are also multilevel solvers, though these techniques avoid any dependence on information regarding an underlying grid geometry or PDE. As a result, GMG methods are effective tools for solving a more restricted class of linear systems with a strong theoretical backing for their performance, whereas AMG solvers apply to more general linear systems, though do not share the same mathematical rigor in justifying their performance. This research project will employ functional analysis as a natural framework for studying GMG and AMG methods in a unified setting. The resulting theory will establish strong guiding principles for analyzing and developing robust, efficient, and scalable multilevel solvers. The iterative solvers under development will be implemented in open source parallel codes, made available to a broader scientific computing community, providing powerful tools for simulation and a foundation for future algorithm research and development. Moreover, this project provides Ph.D. students with opportunities to participate in a variety of education and research activities, in which they will receive advanced training, participate in conferences, and collaborate with researchers from industry and Department of Energy laboratories.This research project investigates a unifying framework for analyzing GMG and AMG methods in a functional analysis setting. This framework provides a strong foundation for understanding the operators, relationships between spaces, and other core ingredients involved in these multilevel solvers, such as the construction of coarse spaces and their respective bases, and a convergence analysis that applies to a broad variety of existing AMG methods. Furthermore, for problems originating from discretized PDEs, the integration of geometric information for constructing auxiliary grid-based preconditioners and highly effective smoothers on each level can be seamlessly integrated, allowing for more flexible and aggressive algebraic coarsening. More benefits of incorporating geometric information are realized in nearly optimal load balancing and predictable communication patterns for parallel implementations. For more general linear systems, the project studies the use of (relaxed) compressed sensing techniques to preserve sparsity for coarse space operators, which can be supplemented with information from an underlying geometric grid or adjacency graphs of the matrix to gain control over the computational complexity. It is expected that these techniques will be useful in solving problems with non-quasiuniform underlying grids or problems with matrices that are not symmetric and positive-definite (SPD). To verify the efficacy of the developed methodologies, the resulting solvers will be applied to fluid-structure interaction problems and nearly singular SPD problems.
该项目的主要目标是创建框架,以开发更强大和用户友好的方程式方程式系统,这些方程式在科学,工程和工业应用中无处不在。研究人员将进行几何多机和代数多族方法的综合分析和开发。几何多机(GMG)方法形成了一类多级求解器,旨在求解由某些离散的偏微分方程(PDE)产生的方程式的线性系统。代数多机(AMG)方法也是多级求解器,尽管这些技术避免了有关基础网格几何或PDE的信息的任何依赖。结果,GMG方法是解决更有限的线性系统的有效工具,具有强大的理论支持,而AMG求解器适用于更通用的线性系统,尽管在证明其性能方面并不共享相同的数学严格性。该研究项目将采用功能分析作为在统一环境中研究GMG和AMG方法的自然框架。最终的理论将建立强大的指导原则,用于分析和开发可靠,高效且可扩展的多级求解器。正在开发的迭代求解器将以开源平行代码实施,可用于更广泛的科学计算社区,为模拟提供强大的工具,并为未来的算法研究和开发提供基础。此外,该项目提供博士学位。有机会参加各种教育和研究活动的学生,他们将接受高级培训,参加会议,并与工业和能源实验室的研究人员合作。该研究项目研究了一个统一的框架,用于分析GMG和AMG方法在功能分析设置中。该框架为了解这些多级求解器所涉及的操作员,空间之间的关系和其他核心成分提供了坚实的基础,例如粗空间的构建及其各自的基础,以及适用于各种现有AMG方法的融合分析。此外,对于源自离散PDE的问题,在每个级别上构建基于辅助网格的预处理和高效的Smoothorth的几何信息的整合可以无缝集成,从而使更灵活,更具侵略性的代数块状。合并几何信息的更多好处是在几乎最佳的负载平衡和可预测的沟通模式中实现的,用于并行实现。对于更通用的线性系统,该项目研究了(放松的)压缩感测技术来保留粗大空间操作员的稀疏性,可以从基础几何网格或矩阵的邻接图中补充信息,以获得对计算复杂性的控制。可以预期,这些技术将有助于解决非对称和非对称和正定石的矩阵(SPD)的矩阵问题的问题。为了验证开发方法的疗效,所得的求解器将应用于流体结构的相互作用问题和几乎奇异的SPD问题。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Randomized and fault-tolerant method of subspace corrections
- DOI:10.1007/s40687-019-0187-z
- 发表时间:2019-08
- 期刊:
- 影响因子:1.2
- 作者:Xiaozhe Hu;Jinchao Xu;L. Zikatanov
- 通讯作者:Xiaozhe Hu;Jinchao Xu;L. Zikatanov
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jinchao Xu其他文献
Extended Regularized Dual Averaging Methods for Stochastic Optimization
用于随机优化的扩展正则化双平均方法
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Jonathan W. Siegel;Jinchao Xu - 通讯作者:
Jinchao Xu
span style=line-height:150%;font-family:Times New Roman;font-size:12pt;A discontinuous Galerkin method for the fourth order Curl problem/span
求解四阶Curl问题的间断伽辽金法
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Qingguo Hong;Jun Hu;Shi Shu;Jinchao Xu - 通讯作者:
Jinchao Xu
Ubiquitin-Mediated Degradation of MORF4L1 By FBXO11 Suppresses Cholesterol Biosynthesis in T Cell Acute Lymphoblastic Leukemia
- DOI:
10.1182/blood-2023-184388 - 发表时间:
2023-11-02 - 期刊:
- 影响因子:
- 作者:
Ye Xin;Xiaowen Chen;Mengli Zhang;Yingcai Jin;Jinchao Xu;Jianxiang Zhang;Xinfeng Chen;Xue Yang;Madeline Niederkorn;Feiqiu Wen;Peng Xu - 通讯作者:
Peng Xu
A new adaptive local mesh refinement algorithm and its application on fourth order thin film flow problem
- DOI:
10.1016/j.jcp.2006.11.005 - 发表时间:
2007-06-10 - 期刊:
- 影响因子:
- 作者:
Pengtao Sun;Robert D. Russell;Jinchao Xu - 通讯作者:
Jinchao Xu
Efficient degradation of methylene blue at near neutral pH based on heterogeneous Fenton-like system catalyzed by Fe<sub>2</sub>O<sub>3</sub>/MnO<sub>2</sub>
- DOI:
10.1016/j.rechem.2024.101795 - 发表时间:
2024-10-01 - 期刊:
- 影响因子:
- 作者:
Tie Geng;Jiaguo Yan;Bin Li;Haiyuan Yan;Lei Guo;Qiang Sun;Zengfu Guan;Chunning Zhao;Jinchao Xu;Weichao Wang - 通讯作者:
Weichao Wang
Jinchao Xu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jinchao Xu', 18)}}的其他基金
Workshop on Mathematical Machine Learning and Application
数学机器学习与应用研讨会
- 批准号:
2020623 - 财政年份:2020
- 资助金额:
$ 38.5万 - 项目类别:
Standard Grant
US Participation at the Twenty-sixth Internaltional Domain Decomposition Conference
美国参加第二十六届国际域分解会议
- 批准号:
1930036 - 财政年份:2019
- 资助金额:
$ 38.5万 - 项目类别:
Standard Grant
Multigrid Methods and Machine Learning
多重网格方法和机器学习
- 批准号:
1819157 - 财政年份:2018
- 资助金额:
$ 38.5万 - 项目类别:
Continuing Grant
Single-grid Multi-level Solvers for Coupled PDE Systems
耦合偏微分方程系统的单网格多级求解器
- 批准号:
1217142 - 财政年份:2012
- 资助金额:
$ 38.5万 - 项目类别:
Continuing Grant
User-Friendly Solvers and Solver-Friendly Discretizations
用户友好的求解器和求解器友好的离散化
- 批准号:
0915153 - 财政年份:2009
- 资助金额:
$ 38.5万 - 项目类别:
Standard Grant
SCREMS: Scientific Computing Environments for Mathematical Sciences
SCEMS:数学科学的科学计算环境
- 批准号:
0619587 - 财政年份:2006
- 资助金额:
$ 38.5万 - 项目类别:
Standard Grant
Adaptive Multigrid Methods for a Multiphase Fuel Cell Model
多相燃料电池模型的自适应多重网格方法
- 批准号:
0609727 - 财政年份:2006
- 资助金额:
$ 38.5万 - 项目类别:
Continuing Grant
Mathematical and Computational Studies of Fuel Cell Dynamics
燃料电池动力学的数学和计算研究
- 批准号:
0308946 - 财政年份:2005
- 资助金额:
$ 38.5万 - 项目类别:
Standard Grant
Scientific Computing Research Environments for the Mathematical Sciences
数学科学的科学计算研究环境
- 批准号:
0215392 - 财政年份:2002
- 资助金额:
$ 38.5万 - 项目类别:
Standard Grant
Multiscale Methods for Partial Differential Equations
偏微分方程的多尺度方法
- 批准号:
0209497 - 财政年份:2002
- 资助金额:
$ 38.5万 - 项目类别:
Standard Grant
相似国自然基金
基于几何代数表示和滑动窗口的惯性导航系统滤波方法
- 批准号:62303310
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
代数几何和算术几何中的Hodge理论与Higgs丛理论
- 批准号:12331002
- 批准年份:2023
- 资助金额:193 万元
- 项目类别:重点项目
离散限制性问题及其在数论与PDEs中的应用
- 批准号:12226404
- 批准年份:2022
- 资助金额:20.0 万元
- 项目类别:数学天元基金项目
加权射影直线凝聚层范畴的几何模型与iHall代数
- 批准号:12271448
- 批准年份:2022
- 资助金额:45.00 万元
- 项目类别:面上项目
热带化及丛代数在Poisson几何中的应用
- 批准号:12201438
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
相似海外基金
Complete reducibility, geometric invariant theory, spherical buildings: a uniform approach to representations of algebraic groups
完全可约性、几何不变量理论、球形建筑:代数群表示的统一方法
- 批准号:
22K13904 - 财政年份:2023
- 资助金额:
$ 38.5万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
The geometric and algebraic properties of 4-manifolds
4-流形的几何和代数性质
- 批准号:
2891032 - 财政年份:2023
- 资助金额:
$ 38.5万 - 项目类别:
Studentship
Fusion of enumerative and algebraic geometry and exploration of quasi-geometric invariants
枚举几何与代数几何的融合以及准几何不变量的探索
- 批准号:
23K17298 - 财政年份:2023
- 资助金额:
$ 38.5万 - 项目类别:
Grant-in-Aid for Challenging Research (Pioneering)
LEAPS-MPS: Combinatorics from an Algebraic and Geometric Lens
LEAPS-MPS:代数和几何透镜的组合学
- 批准号:
2211379 - 财政年份:2022
- 资助金额:
$ 38.5万 - 项目类别:
Standard Grant
Investigations in the algebraic and geometric theory of quadratic and hermitian forms
二次和埃尔米特形式的代数和几何理论研究
- 批准号:
RGPIN-2019-05607 - 财政年份:2022
- 资助金额:
$ 38.5万 - 项目类别:
Discovery Grants Program - Individual